TUFLOW FV User Manual

Flexible Mesh Modelling

2012 (Build 2012)

www.TUFLOW.com www.TUFLOW.com/forum wiki.TUFLOW.com support@tuflow.com

What is TUFLOW FV? Installing TUFLOW FV

> Table of Contents List of Figures List of Tables Appendices

<u>.fvc File Commands</u> <u>.fvm File Commands</u>

Introduction Running TUFLOWFV.exe Before Starting The Modelling Process Tutorial Tips and Tricks

Contents

Contents	i
List of Figures	vii
List of Tables	viii

TABLE OF CONTENTS

1	NAVI	GATING THE MANUAL	1
	1.1	About This Manual	1
	1.2	How to Use This Manual	1
	1.3	Sections	1
2	INTR	ODUCTION	3
	2.1	What is TUFLOW FV?	3
	2.2	Flexible meshes and mesh generation	3
	2.3	Multi-core processing	5
	2.4	TUFLOW Classic or TUFLOW FV?	6
3	BEFO	RE STARTING	9
	3.1	TUFLOW FV program	9
	3.2	TUFLOW FV dongles	9
	3.3	Installing TUFLOW FV	9
	3.4	Running TUFLOWFV.exe	10
	3.	4.1 Double click tuflowfv.exe	10
	3.	4.2 Right Mouse Button in Microsoft Explorer	11
	3.	4.3 From a Console (DOS) Window or "Run"	13
	3.	4.4 Using a Batch File	13
		3.4.4.1 Changing priority	13
		3.4.4.2 Manually	14
		<i>3.4.4.3 From the batch file</i>	14
		3.4.4.4 Advanced .bat Files	15
		<i>3.4.4.5 Pause, restart and cancel a simulation</i>	15
		4.5 From UltraEdit	15
	3.	4.6 From Notepad++	15
	3.5	Mesh Development Tools	15
	3.6	Pre and Post Processing	16
	3.7	File Types	16
	3.8	Recommended Directory Structure	17
	3.9	Recommended "fvc" Structure	17
	3.10	SMS Interface (Beta)	18
	3.	10.1 Installation	18

	3.1	0.2 Loading the Interface	21
	3.11	Excel Interface	22
4	RECOM	MENDED STEPS IN THE MODELLING PROCESS	23
	4.1	Problem definition	23
	4.2	Establish model domain, spatial and temporal scales	23
	4.3	Consolidate and prepare base data	24
	4.3	.1 Bathymetry/Topography	24
	4.4	Mesh construction	25
	4.4	.1 2dm file format	28
	4.5	Boundaries	29
	4.5	.1 Open boundaries	30
	4.5	.2 Bed friction	30
	4.5	.3 Forcings	30
	4.5	.4 Wetting and Drying	30
	4.5	.5 Initial conditions	31
	4.6	Model Parameterisation	31
	4.6	.1 Turbulent Mixing	31
		4.6.1.1 Eddy viscosity	31
		4.6.1.2 Scalar diffusivity	31
	4.6	.2 First or Second Order	32
	4.6	.3 2D/3D	32
	4.6	.4 Baroclinic	34
	4.6	.5 Atmospheric Exchange	34
	4.7	Test Model performance	34
	4.8	Calibration / validation / sensitivity testing	34
	4.9	Application	35
5		SMS AND TUFLOW FV TUTORIAL	36
	5.1	A quick SMS tutorial – trapezoidal channel	36
	Ма	p Coverage (points and arcs defining the model layout)	36
	Cre	ate Scatter points (from which bed levels will be interpolated from)	38
	Bui	ld polygons	40
	Bui	ld the mesh (but need to go back and increase vertex resolution!)	41
	Мо	dify polygons	42
	Line	ear elements	46
	No	destrings (boundary conditions)	47

iii

Contents	5
----------	---

	Visual	ise	48
	5.2 A	quick TUFLOW FV model setup	49
	Establ	ish a folder structure	49
	Work	out nodestring order	49
	Create	e boundary condition files	50
	Create	e the FVC control file	50
	FVC F	ile Contents	50
	Run T	UFLOW FV	52
	Check	Results	52
	5.3 Ir	nclusion of Salinity	54
	Updat	e lines in FVC File	54
	Updat	e boundary condition files	55
	View r	esults	56
	5.4 G	oing further	56
6	TUTORIA	L MODELS	58
	6.1 W	/here are they?	58
	6.2 Si	mple River Bend: Using SMS Interface	58
	6.2.1	Data Provided	58
	6.2.2	Mesh Creation	61
	6.2.3	Model Parameters	79
	6.2.4	Running the Model	82
	6.2.5	Reviewing Results	85
	6.2.6	Reviewing Mesh Performance	90
	6.2.7	Troubleshooting	94
	6.2.8	Optional Exercise: Refining the Mesh	96
7	TIPS, TR	ICKS AND TROUBLESHOOTING	99
	7.1 M	esh generation tips	99
	7.1.1	Primary goal	99
	7.1.2	Combine manual and automated mesh generation techniques	99
	7.1.3	Follow the contours	99
	7.1.4	Build piece by piece	99
	7.1.5	Courant limits	99
	7.1.6	Which mesh type? Pave or Patch?	100
	7.1.7	Interaction between DEM generation and mesh generation	100
	7.1.8	The number of nodes and elements in a mesh	101

iv

	1.9 Does node and element numbering influence compuerformance?	itational 101
7.2	How do I design a mesh for a river bend?	101
7.3	My model runs too slow	101
7.4	Common reasons why a model crashes or won't	start 102
7.4	4.1 You made a simple error	102
7.4	4.2 Nodestrings and boundary conditions don't match	102
7.4	4.3 Initial condition / boundary condition mismatch	102
7.5	Using multiple column csv files in a BC boundary	103
7.6	Structures	103
7.6	6.1 Overview	103
7.6	6.2 Using the hQh rating matrix	104
7.6	6.3 Calculating an hQh relationship	106
7.6	6.4 Logic controls	107
7.7	TUFLOW FV is cell centred	108
7.8	How do I get cell centred outputs?	108
7.9 comm	Specific insertions into the model geometry: the nand	"Cell elevation" 108
7.10	Output of discharge along nodestrings	109
7.11	Mass balance in TUFLOW FV	109
7.12 condit	Distribution of flows across a nodestring "Q" bou tion	indary 109
7.13	How accurately does TUFLOW FV simulate weir f ing a weir structure?	low when not 110
арріу		110
Сомм	MAND FILE (FVC) REFERENCE	113
8.1	List of Available Commands	113
8.2	Command line syntax	114
8.3	Control File Layout	115
8.4	Control File Structure (General)	116
8.4	4.1 Definition	116
8.4	4.2 Time	116
8.4	4.3 Geometry	118
8.4	4.4 Solution Scheme	119
8.4	4.5 Turbulence	122
8.4	4.6 Physical Parameters	123
8.4	4.7 Materials	123
	8.4.7.1 Description of Material Block Commands	124

	8.4	1.8 Initial Conditions	126
	8.4	1.9 Boundary Conditions	127
	8.4	4.10 Description of BC Block Commands	128
	8.4	4.11 Output	133
	8.4	4.12 Description of Output Block Commands	133
	8.5	Control File Structure (Advanced)	137
	8.5	5.1 Structures	137
	8.5	5.2 Wind, Atmospheric Pressure and waves	141
	8.5	5.3 3D	143
	8.5	5.4 Salinity, Temperature, Density	145
	8.5	5.5 Sediments	146
	8.5	5.6 Heat Exchange	146
	8.5	5.7 Water Quality	148
	8.5	5.8 Tracer	149
		8.5.8.1 Description of Tracer Block Commands	149
9	SEDIN	MENT MODULE CONTROL FILE (FVM) REFERENCE	151
	9.1	List of Available Commands	151
	9.2	Description of General Commands	151
	9.3	Description of Sediment Block Commands	152
	9.4	Description of Material Block Commands	153
10	2 д м I	MESH FILE FORMAT REFERENCE	156
	10.1	Element definitions – E4Q and E3T	156
	10.2	Node definitions – ND	159
	10.3	Nodestring definitions – NS	159
11	Refer	RENCES	161
	11.1	References in document	161
	11.2	Additional references to TUFLOW FV in literature	161
12	INDEX	<	162

List of Figures

Figure 2-1	Flexible mesh vs fixed grid	4
Figure 2-2	Typical runtime decrease / computational speed increase with core processing with TUFLOW FV	multi- 5
Figure 3-1	SMS Interface: Configuring Batch File	19
Figure 3-2	SMS Interface: Setting Generic Interface Location	20
Figure 3-3	SMS Interface: Loading Model Definition	21
Figure 3-4	SMS Interface: TUFLOW FV Menu Item	22
Figure 4-1	Digital Elevation Model of Port Curtis, Queensland, Australia	25
Figure 4-2	TUFLOW FV Mesh of Port Curtis, Queensland, Australia	26
Figure 4-3	Mesh nodes, arcs and vertices (left) and the resulting mesh (rig	Jht)27
Figure 4-4	Example 2dm file, showing spatial layout (left) and 2dm file contents (right)	29
Figure 4-5	Illustration of vertical discretisation options; sigma coordinates (top), z coordinates (middle) and hybrid z-sigma coordinates (bottom) (from publicwiki.deltares.nl)	s 33
Figure 6-1	River Bend Tutorial: Bathymetry Data	59
Figure 6-2	River Bend Tutorial: Land Use Data	60
Figure 6-3	River Bend Tutorial: Table of Contents in SMS	61
Figure 7-1	Illustration of the user inputs for an hQh structure	104
Figure 7-2	Illustration of the computational logic for an hQh structure	106
Figure 7-3	Examples of different approaches to defining a structure	107
Figure 10-1	TUFLOW FV Mesh File Viewed Using UltraEdit Text Editor	157
Figure 10-2	Example Quadrilateral Element Definition	158
Figure 10-3	Example Triangular Element Definition	158
Figure 10-4	Example Node Definition	159
Figure 10-5	Example Nodestring Definition	160

vii

List of Tables

Table 2-1	Comparison of TUFLOW and TUFLOW FV	7
Table 3-1	File formats and file extensions used by TUFLOW FV	16
Table 3-2	Recommended TUFLOW FV Directory Structure	17
Table 6-1	River bend Tutorial: Suggested Manning's Values	81
Table 7-1	Interaction between DEM generation and mesh generation	100
Table 8-1	Recommended TUFLOW FV Control File Sections	115
Table 8-2	BC types	131
Table 8-3	Output Types	135
Table 8-4	Output Parameters	135

1 Navigating the Manual

1.1 About This Manual

This document is a User Manual for the TUFLOWFV.exe hydrodynamic computational engine. This engine is driven through a Console (DOS) Window and relies on third party software to provide the interface to the user and the engines. These software are typically a text editor (eg. Notepad++), a mesh generator (eg. SMS), result viewing (eg. SMS) and also possibly a GIS platform (eg. MapInfo). Please also refer to the user documentation or help for the third party software you have chosen to use in addition to this manual.

Setting up a TUFLOW FV model generally requires building a flexible mesh, and the quality of the mesh can have a significant influence on model performance. Recognising this, the manual provides guidance for developing a flexible mesh and an example of creating a flexible mesh using our preferred mesh generator, SMS.

1.2 How to Use This Manual

This manual is designed for both hardcopy and digital usage. Section, table and figure references are *hyperlinked* (click on the Section, Table or Figure number in the text to move to the relevant page).

Similarly, text file commands are hyperlinked and accessed through relevant lists (front page and Section 8). There are also command hyperlinks in the text (normally blue and underlined). Command text can be copied and pasted into the text files to ensure correct spelling.

Some useful keys to navigate backwards and forwards are *Alt Left / Right arrow* to go backwards / forwards to the last locations. *Ctrl Home* returns to the front page, which contains useful hyperlinks. Also, *Ctrl End* provides quick access to the end pages, which contain all the hyperlinks to the text file commands.

Any constructive suggestions are very welcome (support@tuflow.com).

1.3 Sections

- **Introduction:** Section 0 provides some basic information about TUFLOW FV and flexible mesh modelling in general. Reading this section should provide a good overall impression of the modelling approach and under what circumstances use of TUFLOW FV is most appropriate.
- Installation: Section 3.3 provides the steps needed to install TUFLOW FV on your computer.
- **Running the TUFLOW FV executable:** TUFLOW FV is run using a file called TUFLOWFV.exe. This can be activated in a variety of ways that are described in Section 3.4.
- **Before starting:** Once installed, Section 0 describes a few administrative steps that should be followed prior to running TUFLOW FV, such as naming conventions, how dongles work, etc.
- **The modelling process:** What are the steps needed to setup and run a successful modelling exercise? Section 0 provides an overview of the steps.

1

Navigating the Manual

- Quick tutorial on mesh generation and TUFLOW FV model setup: Section 0 demonstrates the development of a very simple model mesh. Follow the steps performed here and expand upon them to develop more complex, real-world models.
- **Tips, tricks, troubleshooting:** Section 7 contains suggested solutions to commonly encountered problems plus tips to help you make the most of TUFLOW FV. This includes tips on flexible mesh generation.
- **Command file references:** Sections 8 and 0 provide the reference to each command available in TUFLOW FV. Use the lists of available commands in Sections 8.1 and 9.1 as a starting point for navigating the reference. Section 0 provides a description of the 2dm mesh file.
- **References:** The references include those identified in the document, plus additional references where TUFLOW FV has been documented in scientific literature.

TUFLOW FV

2

2 Introduction

2.1 What is TUFLOW FV?

TUFLOW FV is an engine for performing 2D and 3D hydrodynamic simulations. The model solves the Non-linear Shallow Water Equations (NLSWE) on a flexible mesh using a finite-volume numerical scheme.

Specific features and capabilities:

- Finite volume explicit
 - ➢ Fully dynamic
 - Timestep dependent upon (CFL) Courant number
- Flexible mesh
 - More flexibility when designing a mesh
 - Can use a fixed grid if preferred
- Parallelised
 - > Can run on multiple processors on a single computer
- Stable numerical scheme
 - Shock capturing capability (stable in supercritical flows, steep gradients, etc)
 - Very stable wetting and drying
- Applications
 - > Traditionally coastal and estuarine applications.
 - ▶ FV engine perfectly suited to dambreak simulation
- Modules
- ➢ Hydrodynamic, 2D and 3D
- Advection dispersion, including atmospheric heat balance and density coupling of temperature, salinity and sediment concentration
- Sediment transport
- ➢ Water quality

2.2 Flexible meshes and mesh generation

TUFLOW FV is a *flexible mesh model*. Compared to other approaches (using fixed grids, etc) the design of the flexible mesh tends to have a greater influence on model performance. Thus, more time and effort should be spent preparing the model geometry. Over the life cycle of a modelling project, a well assembled mesh will save time (both the modellers and the computers).

The flexible mesh consists of a network of irregular triangular and quadrilateral elements. This has inherent advantages, including:

Introduction

- Mesh resolution can be adjusted according to the needs of the study (ie fine resolution in the area of interest, coarser resolution in the regional extents). Thus, a range of spatial scales can be modelled without resorting to nesting.
- Mesh alignment can fit bathymetric contours and boundary extents, optimising mesh resolution. This is particularly relevant in regions with complex bathymetric features.
- Specific features, such as man-made developments, infrastructure etc can be included in the model mesh precisely.

To exploit these advantages, the mesh needs to be designed carefully and appropriately for the specific model application. There are a number of mesh generators available to construct a model mesh, however BMT uses the SMS package, provided by Aquaveo (see <u>www.aquaveo.com/sms</u>). We use SMS for the following reasons:

- SMS (previously Fasttabs of Brigham Young University) has been a commercially available mesh generation package for decades it has been extensively tested, improved and adjusted.
- SMS strikes a good balance between manual and automatic mesh generation techniques; in our experience setting up a mesh still needs some manual inputs!

An illustrative comparison of fixed grid vs flexible mesh is shown in Figure 2-1.

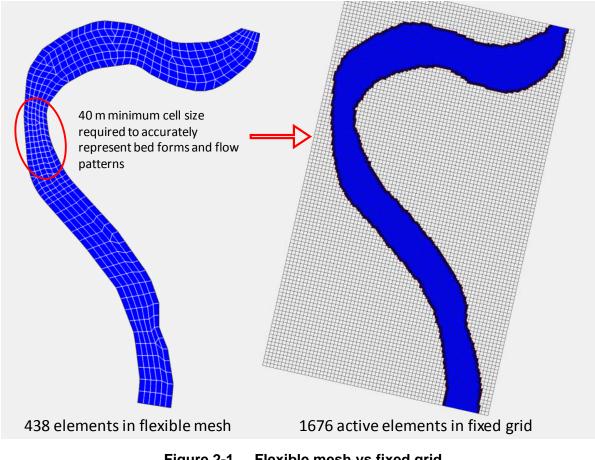


Figure 2-1 Flexible mesh vs fixed grid

Introduction

The flexible mesh shown has 438 elements with a typical cell size of 40 to 140 m. In the narrowest bend of the river the cells are smaller and elongated (ie longer in the direction of flow, shorter across the channel) – the cross-channel width in this location is the critical cell distance in this situation, because this resolution is necessary to accurately describe the bed forms and flow conditions. Thus, the required minimum cell width must be greater than 40 m.

To achieve a similar degree of accuracy the corresponding fixed grid requires a cell size of 40 m. Within the computational domain (ie in the river channel) there are 1676 cells. This is around a four-fold increase in the number of active cells.

Without parallelisation across multiple cores, the computational performance of a finite volume scheme is slower compared to a finite difference scheme; nevertheless, in situations such as illustrated in Figure 2-1 there are good reasons for opting for a flexible mesh approach.

2.3 Multi-core processing

TUFLOW FV is parallelised for multi-processor machines using the OpenMP implementation of shared memory parallelism. This means that a TUFLOW FV model simulation will run faster if there is more than one processor (or thread) on a single computer. The increase in computational speed is not quite linear with the number of threads, as demonstrated in Figure 2-2.

Unless the user decides otherwise, TUFLOW FV will run using the maximum number of threads available to it (limited by the licence). This means that, by default, TUFLOW FV will run as fast as the host computer permits it to.

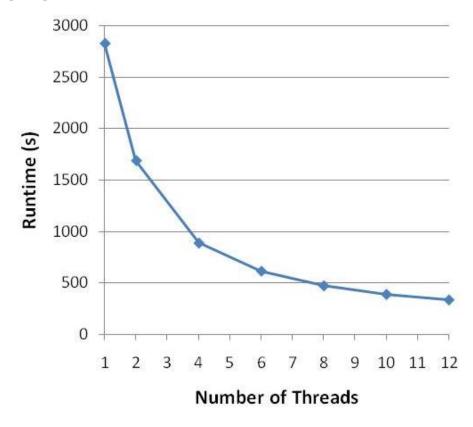


Figure 2-2 Typical runtime decrease / computational speed increase with multi-core processing with TUFLOW FV

2.4 TUFLOW Classic or TUFLOW FV?

Table 2-1 provides a summary of some of the fundamental differences between TUFLOW Classic and TUFLOW FV.

Each have their core applications; TUFLOW has traditionally been applied for floodplain and urban stormwater management and TUFLOW FV has traditionally been applied to coastal and estuarine applications. The available additional modules for each can limit their applicability.

That said, both TUFLOW and TUFLOW FV are broadly applicable to a range of hydrodynamic and related situations. Choice of one over the other depends upon the specific problem to be solved and the modeller's preference and prior experience.

Note that TUFLOW FV can be run using a fixed grid if preferred.

Category	Feature		
General	Solution Scheme	 Finite difference semi-implicit Fully dynamic Timestep not entirely dependent upon Courant number (but wetting and drying + 1d links are explicit features) 	Finite volume explicitFully dynamicTimestep dependent upon Courant number
	Domain	 Fixed grid Nesting if higher grid size needed Diagonal flows can be a pain 1D link workarounds 	Flexible meshNeeds a modeller to design
	Speed	Computationally efficient	More computationally intensive (but can parallelise)
	Stability	Handles wetting and drying well	 Very stable wetting and drying Shock capturing capability (stable in supercritical flows, steep gradients, etc)
	Geometry	 Relatively straightforward to import from DEM Less manual adjustment, less reliance on modeller to design 	 More effort required to design the mesh More flexibility when designing the mesh, more dependence upon modeller to do a good job
	Typical applications	TUFLOW has traditionally been applied for floodplain and urban stormwater management.	TUFLOW FV has traditionally been applied to coastal and estuarine applications.
		 But, TUFLOW originally was created for estuarine application 	• But, FV engine is perfectly suited to dambreak simulation
		Both can be applied to a range of The available additional modules some extent.	applications. for each limit their application to

Table 2-1 Comparison of TUFLOW and TUFLOW FV

Category	Feature	TUFLOW	TUFLOW FV
Category	reature		
Dimensionality	1D / 2D Links	<u> </u>	EN I
	2D		*
	3D		i i i i i i i i i i i i i i i i i i i
Hydrodynamic (HD)	Structures	20	V Re
	Pipes and urban drainage	2	
	Precipitation input	2	✓
	Wind field input	✓	2
	Wave field input	X	2
	Links to global ocean circulation models	X	
Advection Dispersion (AD)	Plumes and pollutants	2	2
	Decay coefficients	2	2
Sediment Transport (ST)	Mud transport	X	2
	Sand transport	2	2
	Sediment plumes	X	
	Morphological Update (Rivers)		(Rec)
	Morphological Update (Coastal)	✓	R
Water Quality and Ecology (WQ)	Water Quality processes	K	(Res)
Other	Emergency flood response and evacuation	2	X
Interface	GIS Environment	2	✓
	SMS		2
	Хр	-	Σ
	ISIS		X

Table continued (see note for symbols)

For specific features listed there are icons as follows:

 \ddagger = core capability, feature used frequently, \checkmark = able to do within product, feature used less frequently, \bigstar = A feature considered for future releases, \checkmark = does not have the capability.

3 Before starting

3.1 TUFLOW FV program

The TUFLOW FV executable, **tuflowfv.exe**, is a command console program. A model is started by calling the executable with the control file (.fvc) as the first and only argument. If no argument is specified the command line will request the user input one. See Section 3.4.

TUFLOW FV is a multi-threaded program based on the OpenMP shared-memory model. It will automatically spawn multi-threaded simulations, where the number of threads can be set by specifying an OMP_NUM_THREADS environment variable. If not explicitly specified the OMP_NUM_THREADS value will be assumed to equal to the NUMBER_OF_PROCESSORS environment variable.

Example: C:\>set OMP_NUM_THREADS=4 C:\>Tuflowfv.exe

3.2 TUFLOW FV dongles

Performing TUFLOW FV simulations will require the presence of a suitably licensed hardware lock. TUFLOW FV supports both local license and network license versions of the WIBU codemeter system dongles. An FV dongle will have one or more engine licenses and typically twice as many thread licenses as engines. For instance, a 4 license hardware lock would permit 4 simultaneous simulations utilising 2 threads each, or it would permit 1 simulation utilising 8 threads.

In addition to the basic TUFLOW FV engine license, various optional modules can be licensed via the WIBU codemeter dongles. The number of module licenses can be less than or equal to the number of engine licenses available on a dongle.

Network dongles are also available, which then licences TUFLOW FV simulations across an office network.

3.3 Installing TUFLOW FV

The following description provides a brief overview of installation; a full description is provided by software support when TUFLOW FV is purchased, or is available on the website at http://www.tuflow.com/ProductDownload.aspx?tuffv.

Installing TUFLOW FV is mostly about installing dongle drivers and licence files. As for all TUFLOW products, TUFLOW FV uses a hardware lock (or dongle). This requires a dongle driver on your computer, then a software licence, to run.

The actual model is TUFLOWFV.exe. It doesn't need to be installed, just placed in a folder on your computer. See Section 3.4. There are also several dll files (dynamic link libraries) which are also placed in the same folder.

TUFLOW FV USER MANUAL BUILD 2010-10-AA

The steps to installation are broadly described below. If you have any queries or problems, or have concerns about the steps, please contact support@tuflow.com.

- 1 Install dongle drivers and hardware dongle
 - > Both 32 and 64 bit dongle drivers are available on the TUFLOW website:
 - o http://www.tuflow.com/ProductDownload.aspx?tuffv
 - Once installed you will need a hardware dongle. The TUFLOW support team will provide this.
- 2 Create licence request
 - If the dongle is not licenced you will need to create a licence request. This is a file (extension .WibuCmRaC), which needs to be emailed to us, then is returned with the updated licence file.
 - Contact support@tuflow.com for detailed instructions.
- 3 Update Licence File
 - The updated licence file is installed using the Codemeter software installed on your computer.
- 4 Update TUFLOWFV.EXE Path
 - The model itself is called TUFLOWFV.exe. This can be placed in any folder on your computer.
- 5 Check TUFLOWFV.EXE
 - Once the previous steps are completed, check that all is working by double clicking on the TUFLOWFV.EXE executable, then pressing RETURN when prompted for an input file. The licence information should be presented. Any problems, contact <u>support@tuflow.com</u>.
- 6 Accessing TUFLOWFV.EXE from your project folder
 - See Section 3.4.

3.4 Running TUFLOWFV.exe

There are several different ways available to run TUFLOW FV, ranging from simple double-click to advanced batch files.

Keep in mind that for all approaches the executable is a single file "tuflowfv.exe"; the operating system, console program or 3rd party program simply accesses this file with associated command line arguments.

3.4.1 Double click tuflowfv.exe

The TUFLOW FV executable, tuflowfv.exe, is a command console program. A model is started by calling the executable with the control file (.fvc) as the first and only argument. If no argument is specified the command line will request the user input one.

3.4.2 Right Mouse Button in Microsoft Explorer

To start a simulation in Microsoft Explorer by using the right mouse button, first follow the following steps to set up a file association:

- 1 In Explorer, open the "View" (or "Tools"), "Folder Options…" menu and select the "File Types" tab. If . fvc files are not in the "Registered file types:" list box, choose "New Type…", otherwise select the .fvc file entry under "Registered file types:" as shown in Step 3 below.
- 2 If adding a new type, enter in a description (eg. "TUFLOW FV Control File") and "fvc" as the associated extension (see below) and press OK.

Create New Exter	nsion	? 🛛
File Extension:	fvd	Ad <u>v</u> anced >>
		OK Cancel

3 The Folder Options dialog should appear something like the below.

Folder Options	×			
General View File Types Offline Files				
Registered file types:				
Extensions File Types				
🖬 FVC FVC File				
🖄 \$\$\$ DWG TrueView Emergency Backup Drawing				
🔜 \$A DWG TrueView Temporary File				
(NONE) AudioCD				
🗇 (NONE) Drive				
🕥 (NONE) DVD Video 🚬				
(NIONE) Eile Eelder				
<u>N</u> ew <u>D</u> elete				
C Details for 'FVC' extension				
Opens with: Change				
Files with extension 'FVC' are of type 'FVC File'. To change settings that affect all 'FVC File' files, click Advanced.				
Advanced				
Close Cancel Apply				

Before starting

4 Click "Advanced" to bring up the dialog below (you can add a new icon and change the file type description here).

Edit File Type	? 🛛
FVC (TUFLOW FV) File	Change <u>I</u> con
	<u>N</u> ew
	<u>E</u> dit
	Remove
	Set Default
Confirm open after download	
Always show extension Browse in same window	
OK	Cancel

5 Choose "<u>New...</u>" and enter text to describe the "<u>A</u>ction:" (eg. "Run TUFLOW FV") – this text appears on the pop-up menu when you click the right mouse button on an .fvc file in Explorer. Enter or use "Browse..." to specify the path to TUFLOWfv.exe; note the need for quotes if the path has any spaces. After "TUFLOWfv.exe", add a space then "%1" including the quotes, as shown below. Choose "OK". The "Application used to perform action:" field should be something like:

"C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" "%1"

New Action	? 🛛
Action:	
Run TUFLOW FV	ОК
Application used to perform action:	Cancel
TUFLOWFV\exe\win32\TUFLOWFV.exe" "%1"	B <u>r</u> owse
Use DDE	

- 6 The action should now appear in the list under "<u>A</u>ctions:". It is not recommended that a "Run TUFLOW FV" action be set as the default action as it is easy to accidentally start a simulation, which instantly overwrites any existing result files. You may wish to set up other associations at this point, for example, to access your preferred editor.
- 7 Choose "OK" or "Close", then "Close" on the "Folder Options" menu.
- 8 Check the file association, by clicking the right mouse button on an .fvc file in Windows Explorer. The "Run TUFLOW FV" action should appear in the list.

Once the file association is complete, clicking the right mouse button on an .fvc file in Explorer, and selecting the "Run TUFLOW FV" action, starts a simulation. A Console Command Window opens and TUFLOW FV starts.

3.4.3 From a Console (DOS) Window or "Run"

A single simulation can be started directly from an open Console Window (also called "Command Prompt" in the list of programmes in Windows) Command Prompt or from the "start" then "run" commands start

For example, at the Console prompt enter:

"C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run01.fvc

You can use the various switches and Windows NT/2000/XP/7 priority settings as discussed in Section 3.4.4 and 3.4.4.1.

3.4.4 Using a Batch File

One or many simulations, and other associated operations, can all be specified within a batch file. The simplest format is to specify each simulation one after another. The following shows the contents of a 4 line batch file (which could be named "TUFLOW FV Simulations.bat"):

```
"C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run01.fvc
"C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run02.fvc
"C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run03.fvc
pause
```

The .bat file is run or opened by double clicking on it in Explorer. This opens a Console Window and then executes each line of the .bat file. The pause at the end stops the Console window from closing automatically after completion of the last simulation.

Note that the full path and executable is within double quotes; this is needed when there is a space in the command.

Comment lines are specified in a .bat file using "#" in the first column, or alternatively a "REM". For example, if you want to re-run only the first simulation in the examples above and include a description for the batch file, edit the file as follows:

```
REM TUFLOW FV Model simulations for demonstration project
REM CFN 09/11/2011
"C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run01.fvc
REM "C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run02.fvc
#"C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run03.fvc
pause
```

3.4.4.1 Changing priority

Windows NT/2000/XP/7 can assign a process a different priority level using the Task Manager. This is very useful for running simulations in the "background" without slowing down other computer work you need to do.

BMT WBM

3.4.4.2 Manually

To change the priority level of simulation manually:

- open Task Manager (see your System Administrator if you're not sure how to do this)
- click on the Processes Tab
- find the TUFLOWFV.exe process you wish to change
- right click, choose Set Priority, then the priority desired as shown in the image below

Note, don't choose High or Realtime as this will cause the TUFLOW process to take over your CPU and you may not able to do much until the simulation is finished.

Applications Processes Performance Networking						
Image Name	User Name	CPU	Mem Usage	^		
WPFFontCache_v0 wmiprvse.exe WINWORD.EXE	40 LOCAL SERVICE SYSTEM cfnielsen	00 00 00	4,748 K 5,464 K 176,760 K	=		
winvnc4.exe WinVi32.exe winlogon.exe	SYSTEM cfnielsen SYSTEM	00 00 00	3,788 K 3,604 K 7,004 K			
UWF06B.EXE TUFLOWFV.exe	SYSTEM cfnielsen	00 81	2,768 K 28,628 K			
TmListen.exe taskmgr.exe System Idle Proces System	End Process End Process Tree Debug	00 01 16 00	15,580 K 3,548 K 28 K 240 K			
SyncServer.exe svchost.exe svchost.exe	Set Priority Set Affinity	Realtime High	- K			
svchost.exe svchost.exe svchost.exe svchost.exe	NETWORK SERVI SYSTEM NETWORK SERVI LOCAL SERVICE	AboveN Normal BelowNo 	ĸ	~		
Show processes f		Low		End Process		

3.4.4.3 From the batch file

The DOS command "start" is required to execute a simulation at a different priority.

Precede each of the lines in the example in Section 3.4.4 with "start "TUFLOW FV" /wait /low" as shown below. This will:

- Initiate a separate Console Window for each simulation
- Give the new console window a title called "TUFLOW FV" (or whatever you choose)
- /wait will ensure that the next line in the batch file is not executed until this line is completed (ie one simulation after another; without the /wait option all simulations will start at once)
- /low will run the simulation on low priority


```
start "TUFLOW FV" /wait /low "C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run01.fvc
start "TFV R2" /wait /low "C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe" run02.fvc
start "Hello World" /wait /low "C:\Program Files\TUFLOWFV\exe\win32\TUFLOWFV.exe"
run03.fvc
pause
```

Other useful switches available are:

- /belownormal and /abovenormal to set these priority levels
- /min to minimise the process once started

3.4.4.4 Advanced .bat Files

Further details on using a batch file are available in the wiki:

• http://wiki.tuflow.com/index.php?title=Run_TUFLOW_From_a_Batch-file

3.4.4.5 Pause, restart and cancel a simulation

To pause a model simulation, highlight the console window and press "Ctrl-S". This will temporarily halt the model simulation.

To continue again, press "Ctrl-Q".

To cancel a simulation, "Ctrl-C".

3.4.5 From UltraEdit

The benefits of running TUFLOW FV from UltraEdit is that it provides a common environment where the control files can be edited, simulations started and text file output be viewed. There is no need to close the .fvc file (or other control and output files) to run TUFLOW FV.

Setting up TUFLOW FV to run from UltraEdit is very similar to setting up TUFLOW Classic. This is described in the wiki:

• http://wiki.tuflow.com/index.php?title=Run_TUFLOW_From_UltraEdit

3.4.6 From Notepad++

As for UltraEdit, Notepad++ provides the option to run TUFLOW FV from the editor, either from a shortcut key or from the menu. Follow the instructions in the Notepad++ wiki:

• http://wiki.tuflow.com/index.php?title=NotepadPlusPlus_Run_TUFLOW

3.5 Mesh Development Tools

The "Surfacewater Modelling System" (SMS) by Aquaveo is a powerful environment for developing TUFLOW FV flexible mesh models and visualising model results. A trial version of SMS can be downloaded from <u>www.aquaveo.com/sms</u>. It's a useful mesh development environment because it

offers a blend of automated mesh generation tools in combination with intuitive manual operators, which is ideal for making a TUFLOW FV flexible mesh.

3.6 Pre and Post Processing

Modelling of any kind requires significant processing and presentation of input and output information. BMT does not sell pre and post processing tools. We do however use a range of commercially available tools that best suit our needs. Generally, TUFLOW FV users employ the following:

- A text editor of some description to edit input text files (UltraEdit and Notepad++ are popular, although Notepad does suffice).
- SMS for mesh generation, pre and post processing. The "SMS Tips" wiki contains some useful information:
 - http://wiki.tuflow.com/index.php?title=SMS_Tips
- Excel spreadsheets.
- Geographic Information Systems (GIS) such as MapInfo or ArcGIS provide powerful environments for developing model components and building blocks, such as Digital Elevation Models.
- MatLab is used extensively for manipulating input data and model results. BMT provides a series of compiled executable MatLab scripts on the website; see <u>www.tuflow.com/ProductDownload</u>.

TUFLOW FV input and output formats are designed to be as flexible as possible to accommodate other pre and post processing tools (see Section 3.7).

3.7 File Types

A variety of file types are used to specify a TUFLOW FV model. Importantly, all of the input and output file types used to specify or produced by a TUFLOW FV model simulation are open formats that can be readily interrogated and manipulated. Many TUFLOW FV components are simple ascii (text) files that can be easily created and manipulated in text editor and spreadsheet environments.

Table 3-1 File formats and file extensions used by TUFLOW FV

Ascii Control File (e.g. .fvc)
SMS Generic Mesh File (.2dm)
Comma Delimited Text File (.csv)
Network Common Data Format - netcdf (.nc)
Hierarchical Data Format - hdf5 (.h5)
SMS Binary Data File (.dat)

3.8 Recommended Directory Structure

It is highly recommended that a directory structure similar to that specified in the following table is adhered to when setting up a TUFLOW FV modelling project. For complex modelling projects it may help if more sub-directories are created. For instance the BC directory could be further split into "Meteorological", "Tidal" and "Catchment" sub-directories.

In many cases the "Output" directory will be specified on a local computer hard-disk as TUFLOW FV output files can sometimes be too large for network storage.

Level 1	Level 2	Level 3	File types	Comments
TuflowFV			SimulationLog.xls	A list of all the simulations performed, their relevant control files and reasons for running them.
	geo		*.2dm, *.csv	Model geometry, often linked to a separate folder containing spatial data generation (such as from GIS and/or mesh generation packages).
	bc		*.csv, *.nc	Boundary conditions.
	input		*.fvc, *.fvm	Input control files, often where TuflowFv.exe is executed from. Batch files are also stored here when performing multiple simulations.
		Log	*.log, *_geo.nc, *_cfl.csv, *.rst	Log files, recording pre-processor outputs and performance during simulation.
	output		*.dat, *.csv, *.nc	Can be a large folder, often placed on local drive rather than a network drive.
	results		*.xls, *.jpg, etc.	Processing of model output
	exe (or bin)		tuflowfv.exe	Optionally, placing the executable (and associated dlls) within the folder structure may be a worthwhile measure if archiving.
	Matlab		*.m, *.mat	Optional, storing Matlab scripts.
	SMS		*.sms, *.2dm, *.mat	Optional, storing intermediate mesh generation files.

Table 3-2 Recommended TUFLOW FV Directory Structure

3.9 Recommended "fvc" Structure

TUFLOW FV control files are simple ASCII based scripts or recipes for how a simulation is to be performed. The control file includes information about the simulation configuration, when the simulation is to start and end, the value of model variables, where to find the model geometric layout, what initial and boundary conditions are specified and what model output to produce.

TUFLOW FV USER MANUAL BUILD 2010-10-AA

As with the directory structure, a standardised layout should be adopted for preparing the TUFLOW FV control file, as shown in Table 8-1 (Section 8). It is also recommended that a fully-featured text editor be used, as these provide various useful features such as "command colour coding", "file hyper-linking" and "macros". One such editor is Notepad++ (this is open source, <u>www.notepad-plus-plus.org</u>).

3.10 SMS Interface (Beta)

An interface for TUFLOW FV that allows the user to build and run a model within SMS is being developed. At present this allows for only limited boundary condition types, but this is planned to be expanded in the future. In this section of the manual, the installation of the interface is described. A tutorial example is provided in Section 6.

3.10.1 Installation

When the TUFLOW FV interface for SMS in downloaded the following files are included:

- 1 Convert_and_run.bat
- 2 Mesh_to_fv.exe
- 3 TUFLOW_FV.2dm

The interface does not need to be installed, however it does need to be configured.

The convert_and_run.bat file is a batch file that will be initialised by SMS. This needs to be configured to your machine, to do this, edit the .bat file in a text editor. An example of commands in the .bat file are show in Figure 3-1 below, the 8th line defines the location of the TUFLOW FV executable, the highlighted text needs to be replaced with the location of the TUFLOW FV executable on your machine.

Tip: In Windows 7 if you explore to the path of the executable, hold shift down and then right click on the executable "Copy As Path" should be an option. This copies the pathname to the clipboard and can be pasted into the text editor.

Similarly line 7 needs to be edited to define the location of 'mesh_to_FV.exe' file.

Before starting

<u>______40_____10_____20_____30_____40_____40_____50_____60_____70_____80___</u> 1 echo off 2 setLocal 3 set input=%1 4 set dir=%cd% 5 set temp=%1:.2dm=.fvc% 6 set output=%input:.2dm=.fvc% 7 set parser="C:\Program Files (x86)\TUFLOW\mesh_to_FV.exe" 8 set tf_fv="C:\Program Files (x86)\TUFLOW\TUFLOWFV.exe" 9 set fvcpath=%dir%\TUFLOWFV 10 11 echo Current Directory: %dir% 12 echo Input 2d mesh file: %input% 13 echo Output control file: %output% 14 echo Path to 2dm convertor: %parser% 15 echo Path to TUFLOWFV exe: %tf fv% 16 echo Press any key to convert to TUFLOW-FV Format 17 echo (where's the any key) 18 pause

Figure 3-1 SMS Interface: Configuring Batch File

In SMS the interface needs to be configured to utilise the batch file that we just modified, to do this, in SMS select:

Edit \rightarrow Preferences...

Navigate to the file locations tab and then in the Model Executables under the Generic entry, select "Browse", navigate to the correct directory, select "All Files" from the files of type dropbox and then and select the convert_and_run.bat. Screen images are provided in Figure 3-2.

The SMS interface is now ready to use.

	ices			83					
	Map	Graphics	Startup	1					
General	Images F	ile Locations Project Explorer	Toolbars Tim	ne					
- Model E	xecutables			1					
Model	Executable								
CMS-F	LOW	c:\program files\sms 11.0\models\CMSFLOW\CMS-F							
CMS-F	LOW - Explicit	c:\program files\sms 11.0\models\							
CMS-W	AVE c:\program files\sms 11.0\models\CMSWAVE\CMS								
FESW									
Generic		C:\TUFLOW_FV\SMS_Template	convert_and_run.bat						
GFGEN	1	c:\program files\sms 11.0\models\tabs\gfgenv45.exe							
NE Pac	cific Tidal Database	BROWSE							
NW At	antic Tidal Database	BROWSE							
PBL		BROWSE							
	D 11								
Other Fi	les								
File		Location							
LATLO	N conversion files	BROWSE		TII					
	vost tidal database	BROWSE							
North /	Arrows Path	c:\program files\sms 11.0	NorthArrows\						
TUFLO	OW Simulations Lo	C:\Users\Public\Do							
Help	1		OK Can	cel					
		_							
Select Model	Executable			×					
•									
Look <u>i</u> n:	SMS_TUFLOW	/FV 💌	← 🖪 🚰 🖽▼	Look in: 🌗 SMS_TUFLOWFV 🛛 🔽 🖨 📸 🏢 🕶					
Æ	Name	<u>^</u>							
- The			Date modified	Type					
	Convert and	run hat	Date modified	Type					
Recent Places	convert_and_		12/06/2012 5:58 PM	Windows					
Recent Places	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows Applicati					
		xe	12/06/2012 5:58 PM	Windows					
Recent Places	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows					
	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows Applicati					
	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows					
Desktop	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows Applicati					
Desktop	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows					
	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows Applicati					
Desktop Libraries	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows					
Desktop Libraries	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows					
Desktop Libraries Computer	mesh_to_FV.e	xe	12/06/2012 5:58 PM 14/05/2012 10:04	Windows					
Desktop Libraries Computer	TUFLOW_FV.2	xe 2dm III	12/06/2012 5:58 PM 14/05/2012 10:04	Windows Application 2DM File					
Desktop Libraries Computer	TUFLOW_FV.2	xe ?dm	12/06/2012 5:58 PM 14/05/2012 10:04	Windows Application					

Figure 3-2 SMS Interface: Setting Generic Interface Location

3.10.2 Loading the Interface

When using the SMS interface for TUFLOW FV the steps involved in creating the model are:

- Create the model mesh (see Section 4.4 and the SMS tutorials)
- Set the model boundaries and parameters
- Select Run TUFLOW FV (in the menu choose TUFLOW FV \rightarrow Run TUFLOW FV). This:
 - (a) Creates the TUFLOW FV directory structure and converts the SMS .2dm file to TUFLOW FV format inputs.
 - (b) Runs TUFLOW FV on the newly created inputs.

When RUN-TUFLOW FV is selected this starts the batch file, which firstly converts the model and then runs the model.

An example model using the interface is provided in Section 6.2. Before starting the creation of the model mesh, the TUFLOW FV definition needs to be loaded into SMS, this is done by opening the TUFLOW_FV.2dm provided with the download (see Figure 3-3). Once loaded a TUFLOW FV menu item is visible, as shown in Figure 3-4. At this stage with no model mesh created most of the options are un-selectable (grey).

NOTE: The Define Model is used to create / modify the interface, this should not be modified by the user and is password protected. If this is modified, the conversion process is highly likely to fail.

With the TUFLOW FV model definition loaded we are now ready to create the TUFLOW FV mesh and model. This is described in the tutorial model in Section 6.2.

🖪 Open		· ·	
Look in:	SMS_TUFLOWFV	← 🗈 💣 📰 ▼	
9	Name	Date modified	Туре
Recent Places	Convert_and_run.bat	12/06/2012 5:58 PM	Windows Batc
	mesh_to_FV.exe	14/05/2012 10:04	Application
	TUFLOW_FV.2dm	14/05/2012 10:57	2DM File
Desktop			
Libraries			
Computer			
Network			
	•		Þ
	File name: TUFLOW_FV.2dm	•	Open
	Files of type: All Files (*.*)	•	Cancel

Figure 3-3 SMS Interface: Loading Model Definition

SMS 11.0 64-bit - [untitled.sms]					
🚽 🛁 File Edit Display Data Nodes Nodestrings Ele	ments (TUFLOW-FV Web Window Help			
		Check Mesh Define Model			
X: Y: Z:	<u>م</u>	Global Parameters Assign BC			
⊡	Material Properties Run TUFLOW-FV				

Figure 3-4 SMS Interface: TUFLOW FV Menu Item

3.11 Excel Interface

Is coming....

4 Recommended steps in the modelling process

4.1 Problem definition

Define the problem(s) that the numerical modelling exercise will seek to solve and explain.

Defining a modelling exercise often starts with a preferred, highly rigorous and scientifically thorough approach that strives to replicate the physical system as accurately as possible. This is followed by a series of compromises and simplifications due to practical constraints. The final problem definition strikes a balance, providing a fit-for-purpose outcome. Key considerations include:

- What is the model expected to deliver?
 - > The purpose of the modelling exercise should be clearly defined.
- What are the key physical processes?
 - A clear understanding of what processes need to be investigated will inform the type of model, what parameters and modules will be used, the extents and degree of accuracies required and, importantly, whether modelling is required at all!
 - > An understanding of scale is important in this regard:
 - o time scales (hours, months, years, decades, etc)
 - spatial scales (global, regional, local, sub-grid, etc)
- What data is available?
 - Successful application of a specific modelling approach can only be achieved if suitable data is available.
- What are the time, economic and logistic constraints?
 - Sophisticated and rigorous modelling studies can take up significant time and resources. Timing, economic and/or logistical constraints can limit the modelling exercise.
 - Computer power is a common constraint that can limit the temporal and spatial extent, resolution and accuracy of a modelling exercise.

BMT WBM

4.2 Establish model domain, spatial and temporal scales

Define a model domain that best fits the key physical processes to be represented and achieves the required spatial and temporal scales within the constraints of available computational power. The computational effort required to run a model simulation is a function of:

- The timestep, which in turn is limited by the element in the model domain that limits the CFL number. Section 7.3 provides further discussion on this aspect.
- How complex the numerical processes are (eg an HD + ST simulation will require additional computational effort compared to a HD simulation).
- The number of active, wet elements (or cells) in the model domain (note that this can vary from one timestep to another).
 - The spatial extent of a TUFLOW FV model (ie the area to be modelled) is typically guided by:
 - the spatial extent of the problem to be solved
 - the availability and locality of data with which to define boundary conditions
 - the spatial extent of the key physical processes to be represented
- The specified start and end time.
 - The temporal extent of a TUFLOW FV model (ie the duration of model simulations) is typically guided by the temporal extent of the key physical processes to be represented. Examples include:
 - $\circ~$ a flood assessment requires simulation of individual flood events of hours duration
 - an estuarine assessment, where tidal forces dominate, requires simulations of semi-diurnal and diurnal tidal cycles and possibly spring /neap cycles
 - a morphological assessment may require simulation periods of decades

4.3 Consolidate and prepare base data

Consolidate and prepare base data, especially bathymetry / topography but also boundary conditions.

Spatial and time series data is normally relatively easy to collate, especially with pre-processing tools such as spreadsheets, GIS, MatLab, etc. Quality checking of data is important (yes, the often quoted garbage in, garbage out phrase cannot be left out of any modelling manual).

4.3.1 Bathymetry/Topography

A good description of bathymetry (below the water surface in rivers, seas, etc) and topography (above the water surface on land) is crucial for all hydrodynamic modelling exercises.

Bathymetric data is typically obtained via hydrographic surveys and/or nautical charts. These sources of data are generally restricted to areas of ship movements and recreational boating. In some instances a hydrographic survey specific to the project may be available. In the absence of reliable hydrographic survey or nautical chart information, bathymetry estimated from satellite data may be available.

TUFLOW

BMT WBM

24

For flooding or coastal inundation a description of the land topography is also required. This information is typically obtained via satellite radar or plane-mounted Laser Detection and Ranging (LIDAR or LADS) instruments.

In most modelling exercises an early step will be to develop a Digital Elevation Model (DEM) of the study area using the available sources of bathymetry/topography data and GIS software. DEMs can be directly imported to some mesh building environments (such as SMS) and used to guide the mesh construction prior to interpolating the elevation data to the TUFLOW FV mesh. Alternatively, and depending on the capability of the mesh building software, the digitised bathymetry/topography x,y,z scatter datasets may be directly imported to the mesh building environment and interpolated to the mesh.

Various bathymetry and topography datasets are freely available online. Note that these datasets are typically of a regional scale and may not resolve local features. An example DEM constructed using MapInfo software from a combination of hydrographic survey, LIDAR and digitised nautical chart data sources is shown in Figure 4-1.

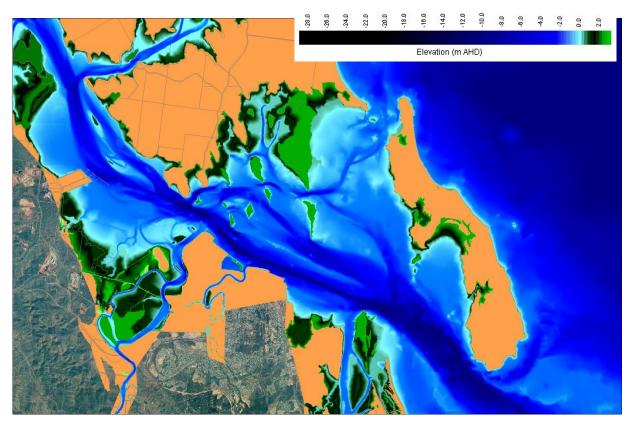


Figure 4-1 Digital Elevation Model of Port Curtis, Queensland, Australia

4.4 Mesh construction

Using mesh generation software, create a model mesh. Design a mesh that takes full advantage of the flexible mesh approach and also avoids pitfalls and disadvantages.

Section 7.1 provides further information.

TUFLOW FV USER MANUAL BUILD 2010-10-AA

TUFLOW FV solves the NLSWE on unstructured meshes comprising of triangular and/or quadrilateral elements. The flexible mesh allows for seamless boundary fitting along complex coastlines or open channels as well as accurately and efficiently representing complex bathymetries with a minimum number of computational elements. The flexible mesh capability is particularly efficient at resolving a range of scales in a single model without requiring multiple domain nesting.

Figure 4-2 shows a TUFLOW FV mesh and DEM of Port Curtis (the DEM without the mesh is shown in Figure 4-1). This mesh was primarily developed to assess the impacts of a proposed shipping navigation channel expansion. Consequently, the mesh was constructed to neatly resolve the existing and proposed shipping channel geometry. Smaller mesh elements (higher mesh resolution) were necessary to resolve the complex tidal flows in the vicinity of the smaller islands and the harbour constriction. Larger mesh elements (lower mesh resolution) were used in regions located away from the areas of interest and/or where the flow varied more gradually, such as the shallow mud flats represented by the dark green areas in Figure 4-2.

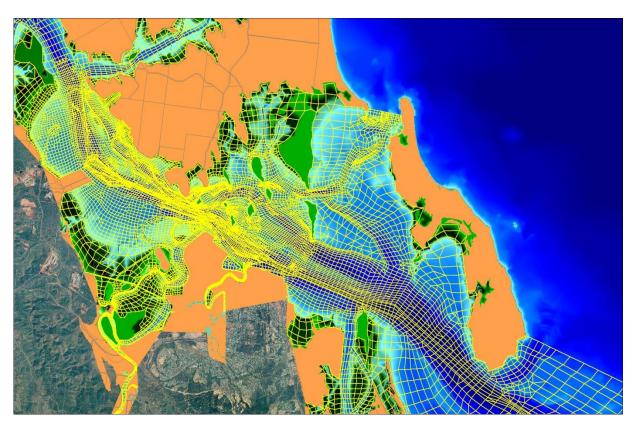


Figure 4-2 TUFLOW FV Mesh of Port Curtis, Queensland, Australia

Unstructured mesh geometries can be created using any suitable mesh generation tool. BMT WBM staff generally use the SMS Generic Mesh Module (<u>www.aquaveo.com/sms</u>) for building meshes as well as undertaking a range of model pre-processing and post-processing tasks. Both Cartesian and Spherical mesh geometries can be used as the basis for TUFLOW FV simulations. Mesh building/editing tutorials are included with a SMS installation or can be accessed via the Aquaveo SMS website.

TUFLOW 🚍

BMT WBM

TUFLOW FV USER MANUAL BUILD 2010-10-AA

A TUFLOW FV mesh is constructed using nodes, arcs and vertices. These "mesh controls" are generally positioned manually by the modeller using their preferred mesh generation tool. Important features of an area to be modelled may include islands, rivers and inlets, deep channels etc. A good mesh is constructed using the mesh controls (nodes, vertices and arcs) to neatly resolve the important features within the model domain.

Figure 4-3 provides an example of the mesh controls and the resulting mesh for a section along a river bend. The left panel shows the mesh controls, namely:

- nodes (red circles)
- arcs (lines between two nodes)
- vertices (small black squares along an arc)

The positions of the mesh controls have been defined by the modeller and in this case are located to resolve the river banks and the main channel. The vertices have been distributed evenly along each arc and control the number of mesh cells that can occur along the arc. The right panel shows the resulting mesh that is generated by the mesh software and based on the positions of the mesh controls.

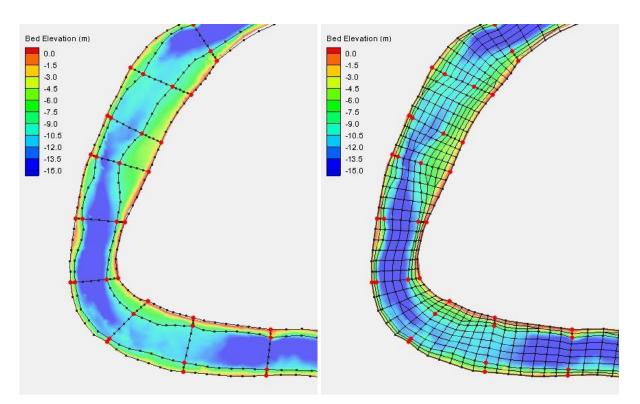
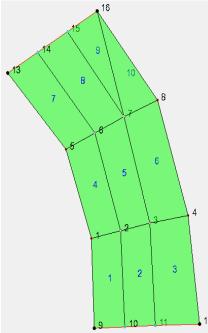


Figure 4-3 Mesh nodes, arcs and vertices (left) and the resulting mesh (right)

Bed levels / bathymetry are normally assigned to the mesh once the mesh design is completed.

For more discussion on mesh generation, see the tutorial exercise in Section 5.1 and tips in Section 7.1.

BMT WBM


4.4.1 2dm file format

The 2dm file format is used to define the TUFLOW FV mesh. It is an ASCII format from the SMS Generic Mesh Module. The contents of the file relevant to TUFLOW FV simulations (see also the example in Figure 4-4) are:

- Lines that commence with a "ND" are nodes, or the points that define the edges of the elements. Each ND line describes the node ID and its x, y and z (ie bed level) coordinate.
- Lines that commence with an "E4Q" are quadrilateral (4 sided) elements. Each E4Q line describes the element ID, the four nodes that define its connectivity and spatial extent (in a counter-clockwise direction) and the material type.
- Similar to E4Q, the "E3T" lines are triangular elements. Each E3T line describes the element ID, the three nodes that define its connectivity and spatial extent (in a counter-clockwise direction) and the material type.
- Lines that commence with a "NS" are nodestrings, which are used to define boundary conditions. Each NS line defines the series of nodes that form the string, the last node number is assigned as negative.
- Other components of the 2dm file are not used by TUFLOW FV.

For more information see Section 0.

	MESH2D
	E4Q 1 2 1 9 10 1
	E4Q 2 3 2 10 11 1
	E4Q 3 4 3 11 12 1
	E4Q 4 6 5 1 2 1
	E4Q 5 7 6 2 3 1
	- E4Q 6 8 7 3 4 1
	E4Q 8 15 14 6 7 1
	E3T 9 16 15 7 1
\	E3T 10 16 7 8 1
	ND 1 2.48000000e+001 4.02800000e+001 0.0000000e+000
	ND 2 3.30421270e+001 4.21236640e+001 -1.00000000e+001
4	ND 3 4.12871134e+001 4.39683219e+001 -1.00000000e+001
	ND 4 5.20800000e+001 4.58200000e+001 0.00000000e+000
	ND 5 1.76200000e+001 6.18200000e+001 0.0000000e+000
3	ND 6 2.57990034e+001 6.57578467e+001 -1.00000000e+001
	ND 7 3.39997467e+001 6.96992724e+001 -1.00000000e+001
	ND 8 4.34600000e+001 7.37100000e+001 0.00000000e+000
	ND 9 2.56200000e+001 1.85400000e+001 0.00000000e+000
12	ND 10 3.42333333e+001 1.88833333e+001 -1.00000000e+001
	ND 11 4.28466667e+001 1.922666667e+001 -1.00000000e+001
	ND 12 5.53200000e+001 1.95700000e+001 0.00000000e+000
	ND 13 1.21000000e+000 8.02700000e+001 0.0000000e+000
	ND 14 9.62000000e+000 8.52633333e+001 -1.00000000e+001
	ND 15 1.80300000e+001 9.025666667e+001 -1.00000000e+001
	ND 16 2.64400000e+001 9.52500000e+001 0.0000000e+000
	NS 9 10 11 -12
	NS 16 15 14 -13
	BEGPARAMDEF
	GM "Mesh"
	SI 1
	DY 0
	TU ""
	TD 0 0
	NUME 3
	BCPGC 0
	BEDISP 0 0 0 1 0 1 0 0 0 0 1
	BEFONT 0 2
	BEDISP 1 0 0 0 1 0 1 0 0 0 1
	BEFONT 1 2
	BEDISP 2 0 0 0 1 0 1 0 0 0 1
	BEFONT 2 2
	ENDPARAMDEF
	BEG2DMBC
	MAT 1 "material 01"
	END2DMBC

Figure 4-4 Example 2dm file, showing spatial layout (left) and 2dm file contents (right)

4.5 Boundaries

The effects at the boundaries of a TUFLOW FV model determine the resulting fluid motion and hydrodynamic prediction. Understanding what is happening at the edges of the model domain is

therefore critical. There are different types of boundaries to be considered when developing a TUFLOW FV model (see also Section 8.4.1 and 8.4.10):

- The open boundaries at the "wet" edges of the model domain
- The closed boundaries at the seabed, open channel bed and water surface
- The boundary at the coastline, river bank or other wet/dry interface
- The initial condition at the start of the simulation

4.5.1 Open boundaries

Open boundaries to the TUFLOW FV model domain should be located where there is some knowledge of the behaviour at that location. For a given period, this information may come from a tide station or other instrument deployed to continuously measure the variation in water level, a gauging station that provides a river discharge measurement, or may be output from larger-scale model.

Descriptions of the various boundary conditions, their commands and associated inputs are provided in Section 8.4.10.

4.5.2 Bed friction

For hydrodynamic simulations (without sediment transport) the bed boundary is simply described using a bed roughness model. The default model is that attributed to Manning, in which case a Manning's "n" coefficient should be specified. An alternative model assumes a log-law velocity profile and requires specification of a surface roughness length-scale, "ks". A single bed roughness can be set globally or the modeller can assign different roughness values to particular mesh cells within the model domain. See Section 8.4.7.1.

4.5.3 Forcings

Boundary conditions can be applied to the water surface and typically include wind, ambient pressure and/or wave fields. In many locations, or for particular events (such as a storm), these forcing mechanisms can have a significant influence on local hydrodynamics. Wind, pressure and wave boundary conditions are typically defined by measurements and/or output from other models. These conditions may be applied globally (i.e. constant throughout the model domain) or allowed to vary spatially for a given timestep.

4.5.4 Wetting and Drying

TUFLOW FV simulates the wetting and drying of areas within the model domain, such as that observed on a gently sloping beach over a tidal cycle or more extreme over land flows associated with a flood, storm surge or tsunami. Dry/wet depths defined by the user will often depend on the scale of the simulation. For full-scale or "real world" simulations, dry/wet depths are typically in the order of centimetres. For some laboratory-scale simulations, for example a dam break or wave run-up, the user defined wet/dry depths may be in the order of millimetres.

TUFLOW FV USER MANUAL BUILD 2010-10-AA

In terms of the TUFLOW FV computations, the drying value corresponds to a minimum depth below which the cell is dropped from computations (subject to the status of surrounding cells). The wet value corresponds to a minimum depth below which cell momentum is set to zero, in order to avoid unphysical velocities at very low depths.

4.5.5 Initial conditions

For models that simulate tidal hydrodynamics only, the modeller may choose to start the model with an initially flat, stationary sea and allow the open boundary input to "warm-up" the model. Under this scenario, the warm-up period should be long enough to allow any transients generated at the start of the simulation to propagate out of the model. Alternatively, the simulation initial condition can be defined manually by the modeller (and read from a .csv file) or by output from a previous simulation (using a TUFLOW FV restart file).

4.6 Model Parameterisation

Define what processes and parameter values are to be assigned to the model, ensuring that their values lie within scientifically justifiable ranges.

4.6.1 Turbulent Mixing

Unresolved mixing processes are modelled as gradient-diffusion, where the eddy-viscosity for momentum mixing and the diffusivity for scalar mixing can be parameterised using various options.

4.6.1.1 Eddy viscosity

The horizontal-mixing eddy-viscosity can be defined as a constant value or can be calculated using the Smagorinsky model. The Smagorinsky model sets the diffusivity proportional to the local strain rate.

The vertical-mixing eddy-viscosity can be defined as a constant value or can be calculated using a parametric model. The parametric model is based on a parabolic eddy-viscosity profile and applies the Munk & Anderson limiters in the case of stable stratification.

Upper and lower bound values can be specified for the horizontal and vertical eddy-viscosities.

4.6.1.2 Scalar diffusivity

The horizontal-mixing scalar diffusivity can be defined as a constant value or can be calculated using the Smagorinsky or Elder models. The Elder model calculates an an-isotropic diffusivity tensor with principal axes aligned with the flow direction and which scales on the local friction velocity. The Elder model allows the user to specify higher mixing in the longitudinal flow direction than transverse to the flow.

The vertical-mixing scalar diffusivity can be defined as a constant value or can be calculated using a parametric model. The parametric model is based on a parabolic eddy-viscosity profile and applies the Munk & Anderson limiters in the case of stable stratification.

TUFLOW FV USER MANUAL BUILD 2010-10-AA

Upper and lower bound values can be specified for the horizontal and vertical scalar diffusivities.

4.6.2 First or Second Order

Higher order spatial schemes will produce more accurate results in the vicinity of sharp gradients due to reduced numerical diffusion, however they will be more prone to developing instabilities and are more computationally expensive. The first-order schemes assume a piecewise constant value of the modelled variables in each cell, whereas the second-order schemes perform a linear reconstruction.

As a general rule of thumb, initial model development should be undertaken using low-order schemes, with higher-order spatial schemes tested during the latter stages of development. If a significant difference is observed between low-order and high-order results then the high-order solution is probably necessary, or alternatively further mesh refinement is required.

Second order spatial accuracy will typically be required in the vertical direction when trying to resolve sharp stratification.

4.6.3 2D/3D

Three-dimensional simulations can be performed within TUFLOW FV using either sigma-coordinate or a hybrid z-coordinate vertical mesh. Three-dimensional simulations can optionally use a mode-splitting approach to efficiently solve the external (free-surface) mode in 2D at a timestep constrained by the surface wave speed while the internal 3D mode is updated less frequently.

As a step in the development of a 3D model a 2D simulation should be performed first. Once the 2D model has been optimised and output verified the modeller may then choose to perform a 3D simulation.

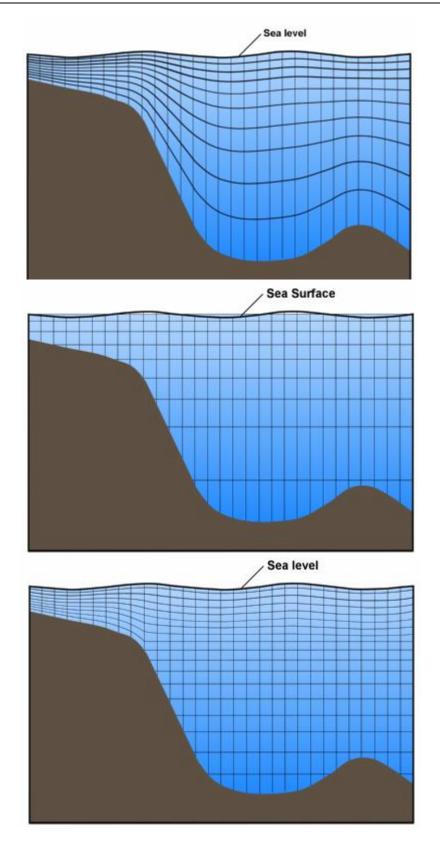


Figure 4-5 Illustration of vertical discretisation options; sigma coordinates (top), z coordinates (middle) and hybrid z-sigma coordinates (bottom) (from publicwiki.deltares.nl)

4.6.4 Baroclinic

Baroclinic pressure-gradient terms can be optionally activated to allow the hydrodynamic solution to respond to temperature, salinity and sediment induced density gradients.

4.6.5 Atmospheric Exchange

Atmospheric heat and momentum exchange can also be calculated given standard meteorological parameter inputs by an integrated module.

4.7 Test Model performance

Once the required input files have been prepared, model performance should be tested:

- Mesh accurately represents the bathymetry / topography
- Key physical processes are suitably represented
- There are no strange element shapes or sizes
- The model does not require unnecessarily short timesteps to run
- Any unexpected outputs or model features are explained and justified.

TUFLOW FV has a number of pre-simulation checks and log outputs that can be used to assist; see Section 8.

4.8 Calibration / validation / sensitivity testing

Calibrate the model to available data.

Verify the model to another set of independent data, preferably from a different location and/or a different time (with correspondingly different physical conditions).

Where knowledge or data is lacking, perform sensitivity tests on model parameters to quantify the uncertainty of model results.

Calibration is the process where the parameters of a model are adjusted, within reasonable bounds, so that results match measurements. Validation is the process where a calibrated model is compared to measurements from a different period with different physical conditions. In combination, calibration and verification prove that the model can replicate the physical processes and is a useful tool. An uncalibrated and unvalidated model is also called a "computer game" (except the graphics aren't usually as good!).

Choice of measurement periods for calibration depends upon the physical processes that need to be captured in the model. Typically, time series of response (for example river discharge / stage or tidal variations) are more valuable for calibration purposes compared to instantaneous spot readings, however all relevant, reliable data should be absorbed into a calibration exercise.

TUFLOW FV USER MANUAL BUILD 2010-10-AA

As a minimum requirement for calibration and validation of a hydrodynamic tidal model, the following measurements are recommended:

- Calibration: A time series of current speed, direction and water level at two separate locations, performed over a 3 day period during a spring tidal range
- Validation: A time series of current speed, direction and water level at two separate locations, performed over a 3 day period during a neap tidal range

If seasonal variations are important, this exercise could be repeated at a different time of year.

Overland flow calibration is less dependent upon instantaneous measurements performed at the time of the modelling study and more dependent upon historical records of floods. In these circumstances, all available information should be sought, quality checked and analysed, and used in the calibration exercise.

If a model cannot be calibrated due to a lack of data, don't despair; application of an uncalibrated model is not a complete waste of time. Be cautious with the model; interpret the results as indicators of specific trends and processes which, when combined with available data and experience, can provide worthwhile information.

4.9 Application

Apply the model to the problem to be solved. Description of existing conditions, impact scenarios and comparison of differences, etc are common applications. Keep in mind the quality and clarity of your post processing; communicating your modelling efforts to your audience effectively is a key part of using TUFLOW FV.

5 Quick SMS and TUFLOW FV Tutorial

5.1 A quick SMS tutorial – trapezoidal channel

The following example demonstrates the development of a very simple model mesh. Follow the steps performed here and expand upon them to develop more complex, real-world models.

The example is a trapezoidal channel, dimensions as shown:

- Top width = 100 m
- Bottom width = 50 m
- Depth = 5 m
- Length of channel = 1,000 m
- Grade of channel = 1 in 1,000
- The model domain should have a resolution of 12.5 m across the channel and 25 m along the channel.

1 Map Coverage (points and arcs defining the model layout)

- A The first step is to setup the SMS Map coverage. In this module the "outline", or specific points and curves that describe the geometry to be meshed, is defined.
- B The map coverage works in a plan view. Using the "create feature point" button, create the 8 points that define the channel.
- C As each feature point is created, use the coordinate boxes in the toolbar to specify the precise coordinates (x and y). Also insert the z value.

The feature points should then look like:

BMT WBM

SMS 10.1 - [untitled.sn	ns]							
	e Objects Web Window Help							_ 8 ×
🧉 🔚 🗁 🖬 🚬 👘		Y	Z:	S:	Vx.	Vy		
Ge Ge State State State Stat		•	2	9	Ve Ve	Vy.		
	<u>4</u> 2, 国家 (522.0,-)	74.4)						
a 🎟 🔝 🤻 🍮 😒 🕹			0 🕅 🌌 🖆	101				
M 🖿 💌 👗 🔿 🗡 🗖	*							

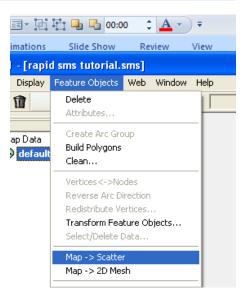
D Now use the "Create feature arc" button to join the dots together.

ile Edit Display Heature	Qbjects <u>W</u> eb Window <u>H</u> elp						-
-	🛛 🔍 🕄 🛵 🛛 🛛	Y:	Z:	S:	Vx	Vy	
Z <mark>≫</mark> Map Data 	S						
V default coverage	ge 🔍						
	ge Ct						
	K						
	·						
	K. K						
	6						
	R C						
	The second						
	2 k 5 m	•					•
	国						
	1						
	111 Sk						
	Sk	•					•
	Ego						
	(40.8, 24	12.0)					

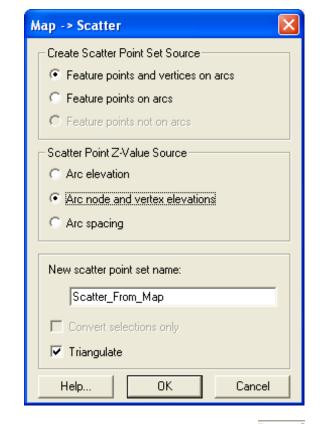
E At this point, it's a good idea to **SAVE**.

~

F Also at this point (if not before), it is time to set the coverage type for the map data. The coverage type must be "Generic 2D Mesh".Right click on the coverage label in the explorer bar as shown:


🖃 🔽 😽 Map Data			<u></u>		
V 🔗 default c	Duplicate Rename		Q‡ ∳∲		
	Convert Reproject	•			
	Metadata		1		
	Zoom to Coverage	_]			
	Туре	×	Generic	۰L	
			Models	•	Generic 2D Mesh
			n l		TUFLOW >

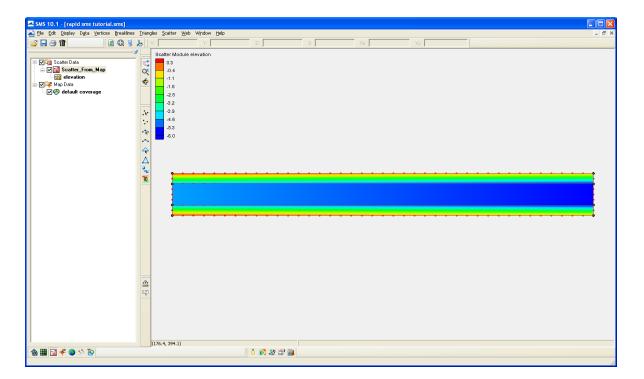
You have now created the basic map layout that will define the model geometry.


2 Create Scatter points (from which bed levels will be interpolated from)

A If you have entered "z" values you can also specify the bathymetry to be used in the model. Do this from the menu "Feature objects" – "Map -> Scatter".

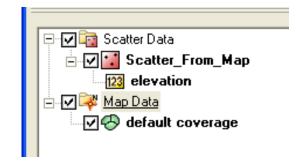
TUFLOW FV USER MANUAL BUILD 2010-10-AA

B Make sure you specify the z value source from the "Arc node and vertex elevations" in the dialog box:


C To see your handiwork, use the display button to turn on contours in the scatter data module:

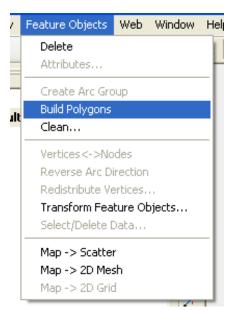
Display Options		\mathbf{X}
General	Scatter Contours Vectors	
General Map Scatter	Points	Inactive color
	Use contour color scheme	🔄 🔽 Nautical grid
	Triangles	Point names
	Boundary	Point numbers
	Contours	Scalar values Options
	Velocity vectors	Use contour color scheme
	V Breaklines	
	Z offset: 0.0	
Show option pages for existing data only		
Help	All On All Off	OK Cancel

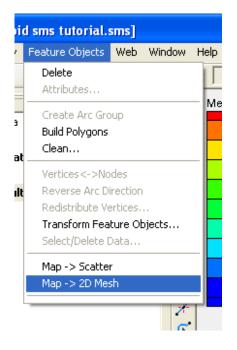
Then the shaded z values are then visible:



These steps (1 and 2) have replaced the often complex steps associated with inputting GIS layers, scatter datasets, etc to create the base geometry for the model. The approach demonstrated is fine for a simple test case, but real world applications are often more complex and contain a variety of data sources, etc. This can be done in SMS in a more rigorous manner (discussed in the SMS manuals) but is also done using other software such as GIS and CAD.

3 Build polygons


A Back to the mesh module – click on the "Map Data" entry in the explorer window to do this.


B The next step is to build polygons, which is done from the menu "Feature objects" – "Build polygons".

This takes the feature arcs and creates a series of polygons. It is these polygons that we can now individually investigate and specify mesh properties for.

4 Build the mesh (but need to go back and increase vertex resolution!)

A Now we can build a mesh. To build the mesh, use the menu commands "Feature objects" – "Map -> 2D Mesh".

The resulting mesh, as shown, doesn't look very good. But it is a mesh! A mesh has been created using 6 triangular elements (pave), connected by the nodes which, in this case, are the 8 points used to define the extents of the trapezoidal channel.

<u>Elle Edit D</u> isplay Feature <u>O</u> t	ojects <u>W</u> eb Window	Help					 - 1
j 🔜 🎒 🗊	2 🔍 💈 🛵	X Y	Z:	S:	Vx	Vy:	
Comparison of the second		(7% Z, 348.2)					
a 🎞 🖬 😽 🥥 🎌 🔯			0 🔊 🛷 🖆 🛄				

Note in the image that the scatter data set has been "unticked" in the explorer window – this hides the scatter data in the display, which makes the other information easier to see. Also unclick the mesh data set to better inspect the mesh module information.

This model geometry is not good enough; we require a much higher resolution than this. To make it better we need to go back to the mesh module and adjust the polygons to create more vertices and hence more elements.

Note: more vertices along the polygon arcs = higher mesh resolution.

5 Modify polygons

A Using the "select feature polygon" button, double click on each of the polygons.

A dialog box will appear with many options. Check out the SMS manual for a better description, or try a few different options and see what happens.

2D Mesh Polygon Properties	
Mesh Type Paving Bias (0.0 - 1.0):	Node Options
Constant 0.0	
Material material 01	•
Arc Options © Use original vertices	
C Distribute vertices Bias (0,1 - 10,0): 0,1	K K K Q Image: Concel Help OK Cancel

Some of the key options worth noting are:

- Mesh type:
 - Paving is the classic triangular mesh, where triangles are used to fill the polygon area.
 - Patch fills the polygon area with a patch of quadrilateral (rectangular) elements. There are some limitations to using this mesh type (like having 4 arcs defining the polygon).
- Bathymetry Type:
 - Scatter Set will use the scatter data we have created in step ? to set the z values in the mesh
- Preview Mesh:
 - ▶ Use this to see how your mesh design looks for this polygon area.

Along the bottom of the display image is a series of buttons which let you adjust arc lines and the vertices that define them.

B For this model example we should adopt a resolution of 5 m across the channel and 25 m along the channel. Using the "Select Feature Arc" button, select the top arc.

Γ

Then, adjust the number of vertices (the "Arc options" buttons) to suit the desired mesh resolution. In this instance, there should be 1,000 / 25 - 1 = 39 vertices. Repeat this for the bottom arc.

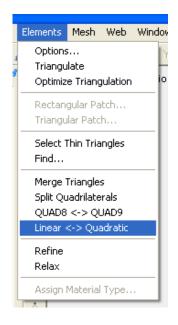
2D Mesh Polygon Properties	
Mesh Type Patch	Node Options
Bathymetry Type Scatter Set Scatter Options Fill from edges	
Material material 01	***************************************
Arc Options	
C Use original 39 vertices	
Distribute 39 vertices	🕅 🔏 🗡 🕵 🛱 🔍 🕅 🛛 Preview Mesh
Bias (0.1 - 10.0): 1.0	Help OK Cancel

- C Repeat for the left and right arcs, which will have 25 / 12.5 1 = 1 vertices. You may need to use the "zoom" button to assist with arc selection.
- D Once this is done, check the "Bathymetry type" to be "scatter set". This will ensure that the z values previously entered into the scatter data will be interpolated onto the final mesh. For a straight trapezoidal channel such as this, a patch mesh type is the most efficient.

Mesh Type
Patch
Bathymetry Type
Scatter Set
Scatter Options 🔲 Fill from edges

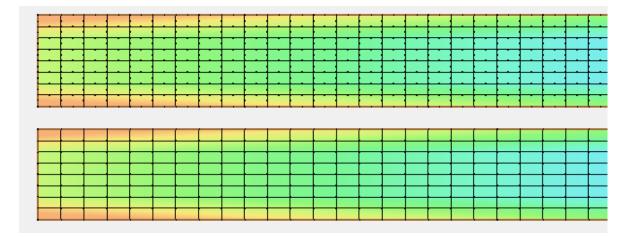
E Use the "Preview Mesh" to see what the mesh looks like. Use the zoom function to see the finer details.

2D Mesh Polygon Properties	
Mesh Type Patch	Node Options
Bathymetry Type Scatter Set Scatter Options Fill from edges Material	
Arc Options C Use original 39 vertices Distribute 39 vertices Bias (0.1 - 10.0): 1.0	Image: Section of the section of t


- F Once happy with the layout the mesh within this specific polygon, repeat with the remaining polygons. The middle polygon has 50 / 12.5 1 = 3 vertices across the channel and 1,000 / 25 1 = 39 vertices along the channel. The lower polygon has the same vertice count as the top polygon. Note that as each polygon is edited, the arc vertices are updated this highlights how the mesh generator tracks each polygon to ensure that the overall mesh is consistent.
- G Now repeat step 4, using the menu commands "Feature objects" "Map -> 2D Mesh", to create the mesh. This time, a reasonable looking mesh should appear.

Ele Edit Display Feature Objects Web Window Help	
	- 8 >
Watch Date 0.3 Status from Map 0.4 Status from Map <th></th>	
(a) III (a)	

6 Linear elements


There are some final adjustments to be made prior to finishing the mesh creation.

A The first is to switch the elements to be linear, rather than quadratic. Quadratic elements (not used by TUFLOW FV) are for finite element models that use mid-side nodes (such as RMA). Press the menu command "Elements" – "Linear <-> Quadratic" to remove the mid-side nodes.

The difference between linear and quadratic can be seen in the mesh display.

7 Nodestrings (boundary conditions)

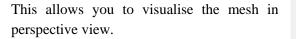
The last step is to insert nodestrings. Nodestrings are a string of nodes that can be used to define boundary conditions in TUFLOW FV (in SMS the nodestrings have a number of other functions not used by TUFLOW FV). For this example, there will be an upstream and a downstream boundary condition applied (ie along the left and right edges of the model domain).

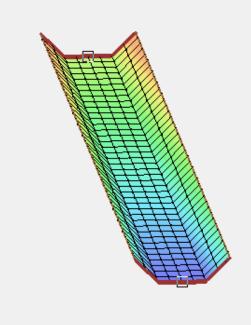
A Press the "Create nodestring" button, then click along the nodes that make up the left edge of the mesh. Then create a second nodestring along the right edge of the mesh.

Hint – hold the "shift" button down to select all nodes between first clicked and second clicked nodes.

These nodestrings are used to specify boundary conditions at a later time (see Section 5.2).

Nodestrings should all be created from right to left while looking downstream.




SMS 10.1 - [rapid sms tutorial.sms]						
Ele Edit Display Data Nodes Nodestrings Elem						_ 6
j 🗔 🗇 🗊 👘 😫 😓	X Y:	Z:	S:	Vx:	Vyc	
Meth Data Meth Lag devalue Scatter_From Map Map Data Map Data Map Data Map Cata Map Cataa Map Cataaa Map Cataa Map C	Mesh Module elevation 0.3 0.3 0.4 1.1 1.1 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5					
	(219.4, 385.3)					
🔉 🎞 🚅 🦑 🥥 🔊 投		0 🔊 🎎 🖆	·			

Save now. You have completed the construction of a mesh, congratulations.

8 Visualise

A The best way to admire your handiwork is to use the "Rotate" button.

TUFLOW

SBMT WBM

5.2 A quick TUFLOW FV model setup

The following example takes the model mesh of a trapezoidal channel created in Section 5.1 and sets up, runs and visualises a hydrodynamic simulation.

Specifications for the model setup of Flume 2 are as follows:

- The bed is lined with a coarse concrete; a Manning friction of 0.014
- There is a constant upstream inflow of 419.089m³/s
- The downstream water level is 78.401 m above the bed in super-critical and the downstream water level is 77.937 m in subcritical.

1 Establish a folder structure

The first step is to establish a folder structure (see Section 3.8). So for a TUFLOW FV model project called "quick tutorial", the folder structure will be:

```
\---quick tutorial
    +---bc
    +---geo
    +---input
    +---output
    \---results
```

Place the .2dm file created in Section 5.1 into the "geo" folder.

2 Work out nodestring order

TUFLOW FV uses the nodestrings as boundaries. The nodestring ID specified in TUFLOW FV is the same as the ID listed in the 2dm file. In the SMS interface, click on a nodestring (using the nodestring select tool). The info bar along the bottom of SMS will show you what the nodestring ID is.

Alternatively, open the 2dm file in a text editor and look for the nodestrings. Do this by searching for "NS" at the start of the line. For the 2dm file from Section 5.1, the NS lines are as follows:

```
NS 83 1 42 369 368 367 246 245 -244 1
NS 241 242 243 364 365 366 82 41 -123 2
```

The first NS string listed here has a negative number at the end (which signals that this is the end of the nodestring) and then the nodestring ID, which in this case is 1. Similarly, the second nodestring listed has an ID = 2.

Don't worry if the nodes listed in the nodestring are in reverse order to that shown; this doesn't influence their behaviour when used as boundary conditions (TUFLOW FV considers positive flow to be always entering a model domain, and negative flow leaving a model domain).

TUFLOW FV USER MANUAL BUILD 2010-10-AA

3 Create boundary condition files

For TUFLOW FV, separate csv format files contain boundary conditions. There is typically one file for each boundary. See Section 8.4.10.

In this case, the boundary conditions are very simple because the run is steady state.

The flow boundary (called "steadyQ.csv") should contain the following:

```
Time,Flow
0,0
1,100
2,450
6,450
```

Note that the first column (time) is in hours. Note also that there is a warm-up period of 2 hours; see Section 7.4.3 for a discussion on this (or, try removing the warmup by putting a constant 450 m^3/s and see what happens!).

The water level boundary (called "steadyWL.csv") should contain the following:

Time,WL 0,-3.50 24,-3.50 48,-3.50

Both files should be placed in the folder "bc".

4 Create the FVC control file

Often, an fvc file is created from an earlier model or from a template. If using a template then it's good practice to comment out the irrelevant commands. A "!" at the start of the line means that the line is not read by TUFLOW FV. This allows you to insert comments into your fvc file (this is recommended).

To simplify this example only those lines that are relevant to this simulation are shown in the fvc file. For this tutorial example, the file is called "trap steady 01.fvc".

The fvc file is shown below. A description of each entry is provided; for further information see Section 0.

5 FVC File Contents

Description

! TUFLOW FV TUTORIAL
! Flow along a trapezoidal channel

The first 2 lines are a description of the model simulation. You may also wish to include the initials of the modeller, etc.

```
! TIME COMMANDS
                                                    The time commands include the start and end
start time == 0.0
                                                    times (the default time format is Hours). The
end time == 6.0
                                                    CFL limit is 1 by default - TUFLOW FV
cfl == 1.0
                                                    then assigns a timestep at each computational
timestep limits == 0.0001, 10.
                                                    step according to the CFL limit and between
                                                    the ranges specified in the timestep limits.
! MODEL PARAMETERS
                                                    The model parameters are those that control
stability limits == 10. ,100.
                                                    various physical and numerical processes.
momentum mixing model == Smagorinsky
global horizontal eddy viscosity == 0.2
                                                    When the stability limits are exceeded (water
                                                    level first, then velocity), the model is
                                                    considered to have crashed. Note that the
                                                    velocity limit here is high - that's because
                                                    the velocities along the wetting and drying
                                                    boundary edges are high.
                                                    A Smagorinsky eddy viscosity approach has
                                                    been specified, with a Smagorinsky factor of
                                                    0.2.
I GEOMETRY
                                                    The model geometry is the 2dm created in
geometry 2d == ..\geo\quick tutorial.2dm
                                                    Section 5.1.
! MATERIAL PROPERTIES
                                                    So far, material types haven't been
material == 1
                                                    highlighted. By default, SMS will create
  bottom roughness == 0.018
                                                    elements using a single material type (1). It is
end material
                                                    this material type that is assigned a bottom
                                                    roughness of 0.018 (the default friction
                                                    approach is a Manning's number).
! INITIAL CONDITIONS
                                                    The initial condition is 2.5 m above the bed
initial water level == -3.5
                                                    at the downstream end (ie -3.5 m).
units == english
                                                    The unit is in feet. Roughness parameters
                                                    will be automatically converted in the
                                                    appropriated unit.
! BOUNDARY CONDITIONS
                                                    The boundary conditions link the csv files
bc == Q, 1, ...\bc\steadyQ.csv
                                                    containing the actual flows and water levels
  bc header == time,flow
                                                    to the nodestrings. Nodestring 1 is assigned a
end bc
                                                    flow boundary and nodestring 2 is assigned a
bc == WL, 2, ... bc \steadyWL.csv
                                                    water level boundary.
  bc header == time,WL
end bc
! OUTPUT COMMANDS
                                                    In this instance, a daty format file is
output dir == ..\Output\
                                                    specified. This format is easily read into SMS
output == datv
```



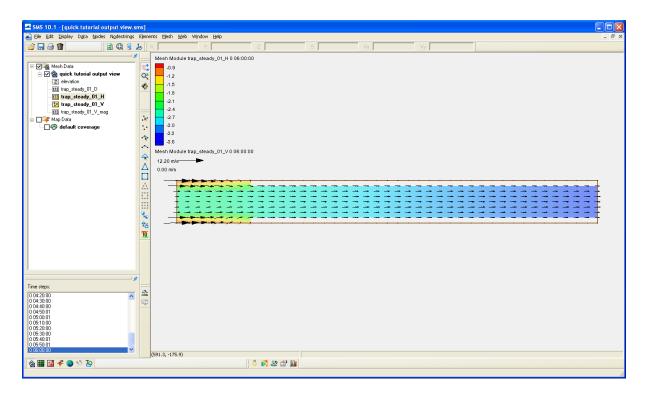
```
Output Parameters == h,v,d
Output Interval == 600
end output
```

for viewing. The h, v and d mean that outputs files containing water level, velocity and water depth will be created.

6 Run TUFLOW FV

Once you're happy with the fvc file contents, run TUFLOW FV. See Section 3.4 for information on how to do this – a right click from Explorer is a straightforward way.

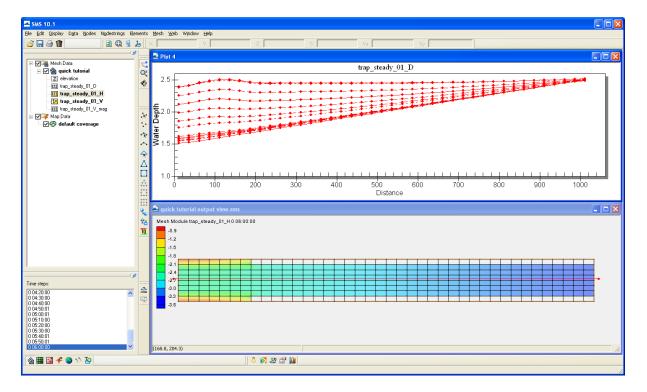
🖄 trap_stead	Lu of Eur
er ap_scoar	Edit
	Run TUFLOW FV


You may find that your simulation has crashed, or some other syntax error in the inputs has caused it to stop. If this happens, open the log file to see what may have gone wrong. Be logical and thoughtful in your model preparation; often it's a simple mistake that causes the most frustration. See Section 7.4 for advice.

7 Check Results

During the model simulation the result files will be written; one for the water levels ("_H".dat), one for velocities ("_V.dat") and another for water depths ("_D.dat"). They will have the same prefix as the fvc file; in this example they will be called:

```
trap_steady_01_H.dat
trap_steady_01_V.dat
trap_steady_01_D.dat
```


To view them, start SMS and open the 2dm file. Then, from either the SMS menu or by dragging into the SMS window, open the dat files. See the SMS manual for advice on viewing results files.

In this instance the results can be checked by comparing to the Manning's equation ($Q = 1/n A R_h^{2/3} S^{1/2}$). For a flow rate of 450 m³/s the normal water depth is approximately 2.5 m. Thus, in this example, there should be a reasonably constant water depth along the length of the channel at the end of the simulation.

There are a range of display options in SMS; the following display shows a longitudinal profile of water depths throughout the simulation. To do this, a feature arc needs to be created in the Map module (the type of this coverage needs to be "Observation"). Then, the "Display" – "Plot wizard" menu is used.

As shown, at the end of the simulation there is almost a constant water depth of 2.5 m – success, TUFLOW FV is replicating the Manning's equation!

5.3 Inclusion of Salinity

It is relatively straightforward to include a conservative tracer into the model simulation. The following additional components are required:

Update lines in FVC File	Description
<pre>! TUFLOW FV TUTORIAL ! Flow along a trapezoidal channel + AD ! SIMULATION CONFIGURATION include salinity == 1,0</pre>	Include salinity as a model parameter (the first number = 1), but decoupled from the density simulations (the second number = 0).
<pre>! TIME COMMANDS start time == 0.0 end time == 6.0 cfl == 1.0 timestep limits == 0.0001, 10.</pre>	
<pre>! MODEL PARAMETERS stability limits == 10. ,100. momentum mixing model == Smagorinsky global horizontal eddy viscosity == 0.2</pre>	

<pre>Scalar mixing model == constant Global horizontal scalar diffusivity == 1 ! GEOMETRY geometry 2d ==\geo\quick tutorial.2dm</pre>	The scalar mixing model and diffusivity are specified as model parameters.	
<pre>! MATERIAL PROPERTIES material == 1 bottom roughness == 0.018 end material</pre>		
<pre>! INITIAL CONDITIONS initial water level == -3.5</pre>		
Initial Salinity == 0	The initial concentration is 0.	
<pre>! BOUNDARY CONDITIONS bc == Q, 1,bc\steadyQS.csv bc header == time,flow,Sal end bc bc == WL, 2,bc\steadyWLS.csv bc header == time,WL,Sal end bc</pre>	An additional column in the boundary condition files is required, specifying the concentration at the boundary.	
<pre>bc == QC, 240,55,\bc\cellQ.csv bc header == Time,flow,Sal end bc</pre>	A new boundary condition (QC) defines a constant inflow into an element (or cell). The numbers 240,55 are the x,y coordinates where the inflow will occur.	
<pre>! OUTPUT COMMANDS output dir ==\Output\ output == datv Output Parameters == h,v,d,Sal Output Interval == 600 end output</pre>	An additional output parameter is specified (Sal).	

9 Update boundary condition files

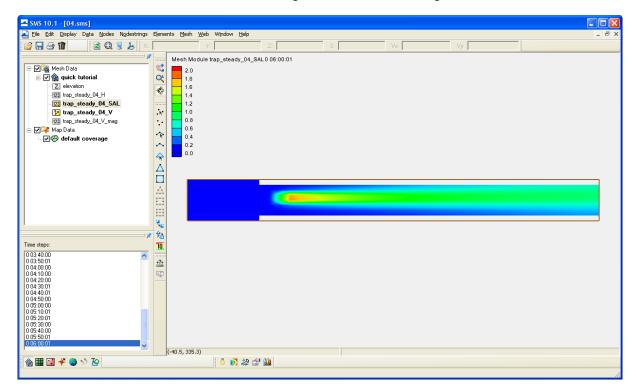
The updated flow boundary (called "steadyQS.csv") should contain the following:

```
Time, Flow, Sal
0,0,0
1,100,0
2,450,0
6,450,0
```

The water level boundary (called "steadyWLS.csv") should contain the following:

```
Time,WL,Sal
0,-3.50,0
24,-3.50,0
48,-3.50,0
```

The cell inflow boundary (called "cellQ.csv") should contain the following:


```
Time, Flow, Sal
0,0,30
1,10,30
2,10,30
6,10,30
```

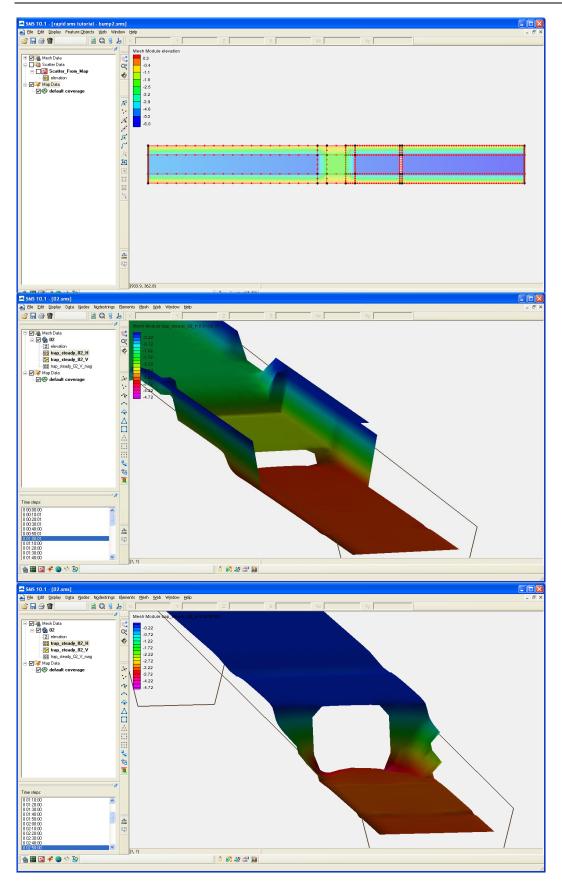
10 View results

The output file with concentrations will have the extension "_SAL.dat":

```
trap_steady_01_SAL.dat
```

The results view in SMS should look something similar to the following:

5.4 Going further


For modellers with a firm grasp of the basics of modelling, the best way to learn how to setup and run TUFLOW FV is to experiment. In the following example, the mesh created in Section 5.1 has been adjusted to include a "bump" in the centre and a constriction further downstream, which will induce transitions to supercritical flow. Mesh resolution has been increased around these features.

The results are far more interesting using this mesh design (see following page).

Additional tutorials are available on the website. Check out <u>www.tuflow.com</u>.

```
TUFLOW FV USER MANUAL BUILD 2010-10-AA
```


6 Tutorial models

6.1 Where are they?

Check out <u>www.tuflow.com</u> for a series of tutorial models that can be downloaded and analysed. Note that the quick tutorial described in 5 is not available; the emphasis of the quick tutorial is to demonstrate the steps taken rather than the end result.

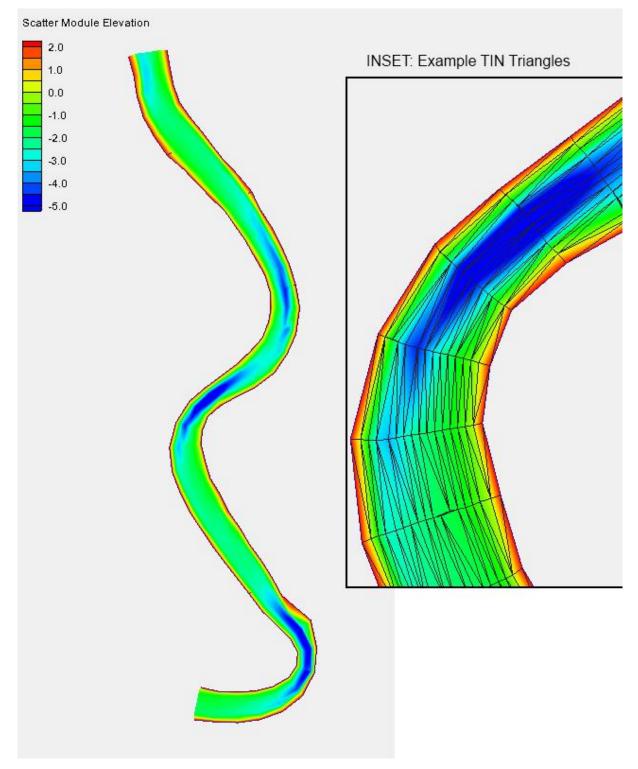
A description of the tutorial exercises is provided here.

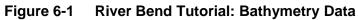
6.2 Simple River Bend: Using SMS Interface

In this tutorial a simple model of a short section of river is created using the SMS TUFLOW FV interface. The setup of the SMS TUFLOW FV interface is described in Section 3.10. Please follow the configuration steps in this section before starting this tutorial.

For this model we will be building a mesh for an inbank area of a river, we will be applying an upstream inflow boundary and a downstream tidal boundary.

Before we start to create the TUFLOW FV mesh we need to load the TUFLOW FV model definition in SMS if it isn't already loaded. To do this open the TUFLOW_FV.2dm provided as part of the SMS interface.


NOTE: The Define Model is used to create / modify the interface, this should not be modified by the user and is password protected. If this is modified, the conversion process is highly likely to fail.


6.2.1 Data Provided

For this tutorial the following datasets have been provided.

- Bathymetry data, this is provided as a SMS Scatter TIN dataset
- Land-use areas, provided as SMS Map Coverage
- Boundary condition data, in comma separated variable (.csv) format

The SMS data (bathymetry and land use data) are shown below in Figure 6-1 and Figure 6-2 respectively. Load the bathymetry data (RiverBend_Bathymetry.tin) and land use data (RiverBend_LandUse.map) in SMS. When loaded correctly the table of contents in SMS, should contain the scatter dataset containing the bathymetry and a map dataset containing the land use polygons as shown in Figure 6-3.

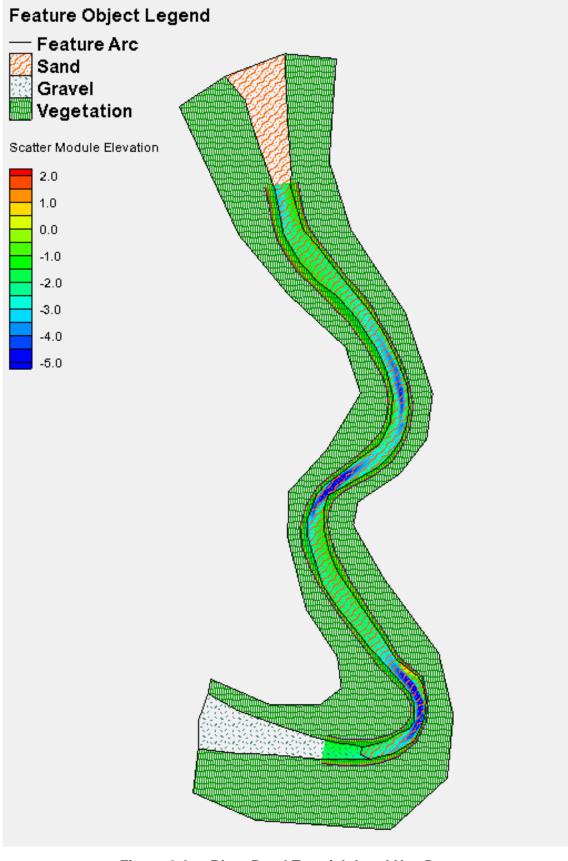


Figure 6-2 River Bend Tutorial: Land Use Data

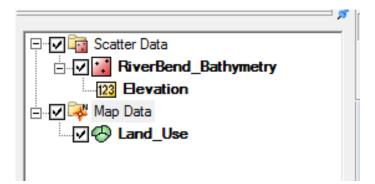
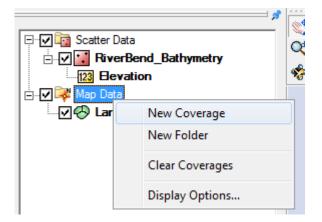



Figure 6-3 River Bend Tutorial: Table of Contents in SMS

6.2.2 Mesh Creation

Before starting it is a good idea to save a project in SMS, when loading the project all the base data will be loaded. To save a project, select File >> Save as... Save the project as RiverBend_Mesh001.sms and ensure the file is being saved as a project file (.sms).

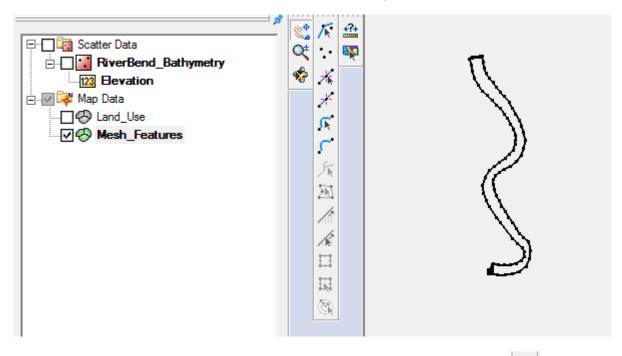
Now that the required datasets are loaded we can begin to create the model mesh. We need to create a new coverage in the map module. Right click on the "Map Data" heading and select "New Coverage" as shown below.

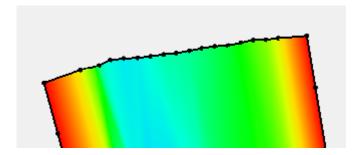
The coverage type should be set to Models >> Generic 2D Mesh. Name the coverage "Mesh_Features" and then select OK.

Tutorial models

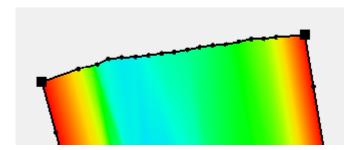
New Coverage				
Coverage Type:				
Generic Area Property Observation Particle/Drogue Shoals Spatial Data Stamping Generic 2D Mesh Generic 2D Mesh Gage PTM Gage PTM TABS OTUFLOW D Cross Sections 1D Networks 1D Water Level Lines				
Coverage Name: Mesh_Features Attributes				
ОК Са	ncel			

Make sure the newly create "Mesh_Features" layers is selected in the table of contents as per the image below.

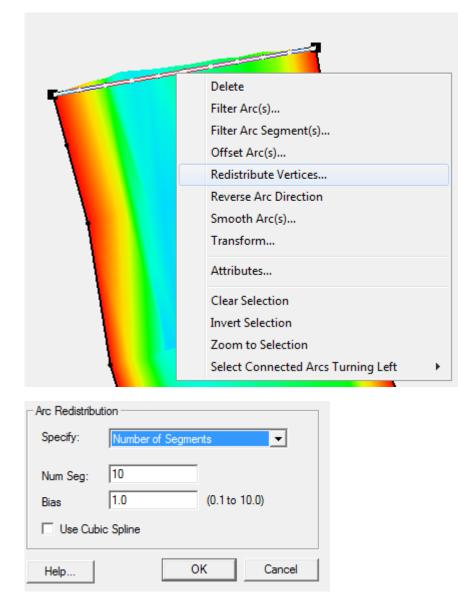

In this layer we need to create a feature arc (polyline) in SMS to define our model extent. This can be done using the create feature arc button (?). However, in this case the model we are going to create covers the full extent of our bathymetry set, so we can use the extent of the bathymetry in defining the model extent, this needs to be converted into an object in our "Mesh_Features" layer. To do this right click on the RiverBend_Bathymetry scatter dataset and the select convert >> Scatter Boundary >> Map (this step is shown below).


Tutorial models

Content Data C	Q± • •	Scatter Module Elevation 2.0 1.0 0.0 -1.0 -2.0 -3.0
	Convert >	Scatter Boundary -> Scatter
	Reproject	Scatter Boundary -> Map
	Metadata	Scatter Breaklines -> Map Scatter Contours -> Map
	Zoom to Scatter	Scatter -> 2D Mesh

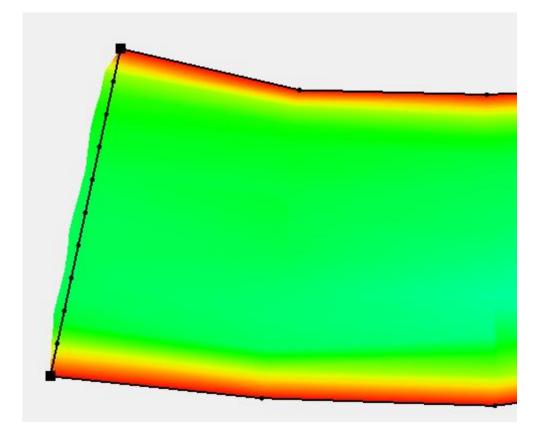

After the conversion, the scatter dataset boundary should be in the Mesh_Features layer (this is easier to see with the scatter set turned off). This is shown in the image below.

Zoom in to the northern boundary of the model, and select the two corner vertices (


Before

After

Select the feature arc () and then right click and use the redistribute vertices to redistribute 10 vertices along the line.

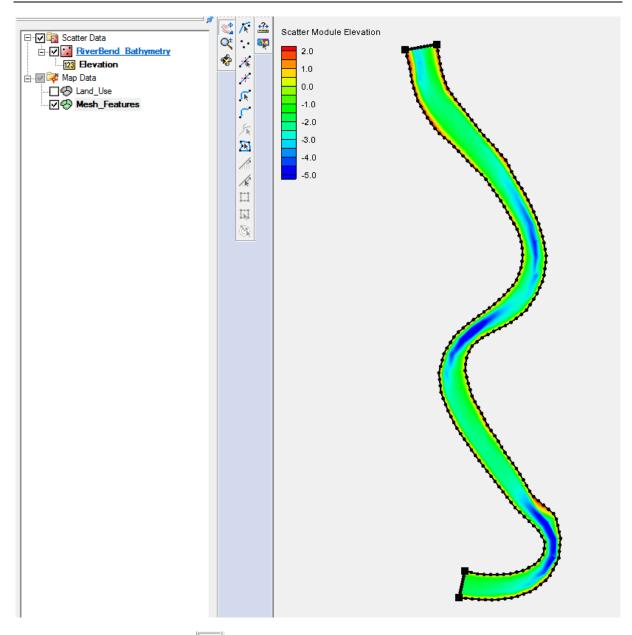


Redistribute 10 vertices across the channel.

Repeat the process at the southern edge of the model.

Redistributed vertices at Southern Edge of model.

Select the two feature arcs along the banks of the river and redistribute with a specified spacing of 20 (metres).


In order to build a mesh, we need to create a polygon from the feature arcs. To do this, select Feature Objects >> Build Polygons.

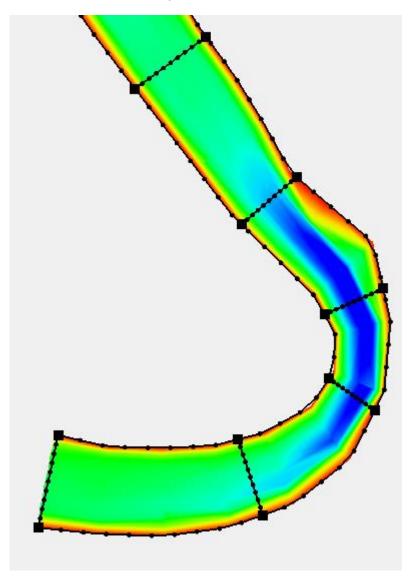
Feat	ure <u>O</u> bjects <u>W</u> eb	W <u>i</u> ndow	<u>H</u> elp
	Delete		
	Attributes		
	Create Arc Group		
	Build Polygons		

The SMS window should now appear as below.

Using the polygon select tool (2), select the polygon. The default mesh type is paving, using this mesh type, the default elements are triangles as per the image below

2D Mesh Polygon Properties	×
Mesh Type Paving Bias (0.0 - 1.0):	Node Options
Bathymetry Type Constant 0.0 Material Gravel	
Arc Options © Use original vertices © Distribute vertices Bias (0.1 - 10.0): 0.1	Image: Concel Image: Concel Image: Concel

The mesh type patch uses quadrilateral elements preferentially. Change the mesh type to "Patch" and select Preview Mesh. With the entire section of river as a single patch mesh, the quadrilateral elements get wrapped around the bend as shown in the image below:


Note: You may receive an error about overlapping elements

2D Mesh Polygon Properties	—
Mesh Type Patch	Node Options
Bathymetry Type Constant 0.0 Fill from edges	
Arc Options © Use original vertices © Distribute vertices Bias (0.1 - 10.0): 0.1	Image: Second

To avoid this, it is best to include sections across the channel (perpendicular to flow) at regular spacing along the channel, and in particularly around the bends.

To do this use the create feature arc button (\checkmark) to create the lines across the river. These do not need to snap to existing vertices, new ones will be created if required. An example is shown below, once the lines are drawn, 10 vertices should be distributed along each arc. Using the select tool, multiple arcs can be selected holding down shift.

Once the additional arcs have been created, the polygons need to be rebuilt. To do this select Features Objects >> Build Polygons from the menu. Once rebuilt, the individual polygons can be selected and have different mesh types applied.

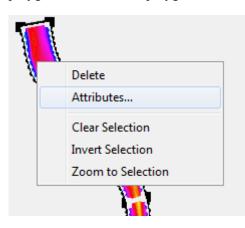
Select the southernmost polygon and select attributes (or double click on the polygon). Ensure the Mesh Type is set to patch and then hit preview mesh.

2D Mesh Polygon Properties	X
Mesh Type Patch	Node Options
Bathymetry Type Constant 0.0 Fill from edges Material Gravel	
Arc Options © Use original vertices © Distribute vertices Bias (0.1 - 10.0): 0.1	K K C Image: Concel Help OK Cancel

In the mesh preview window, the mesh is now much better aligned with the predominant flow direction than previously. However, along one bank there are more vertices than the other; TUFLOW FV can handle both triangles and quadrilateral elements, so this is not a major issue. However, to align the elements with the flow direction, quadrilaterals are preferred over triangles (small elements, such as triangles in deep water can also reduce the timestep).

In this scenario, the river width remains relatively constant and we will use quadrilateral elements throughout the mesh. To achieve this, in the mesh properties dialogue, select the two bank lines and then in the Arc options the number of vertices can be redistributed. If both are selected, each bank will have the same number of vertices and quadrilateral elements will be created.

2D Mesh Polygon Properties	
Mesh Type Patch	Node Options
Bathymetry Type Constant	
Material Gravel	
Arc Options C Use original vertices Fibitition Distribute 9 vertices Bias (0.1 - 10.0): 1.0	1 ✓ ★ ★ ↓ ✓ @ 1 Preview Mesh Help OK Cancel



Repeat the process along the channel, an example is shown below.

When you have finished creating you mesh areas, we need to specify an elevation data source. This can be done individually for each polygon, however, as the bathymetry source is consistent, we can

select all polygons using the polygon select tool (¹²³) you can drag and drop a box around all polygons. With all the polygons selected, right click and select "Attributes".

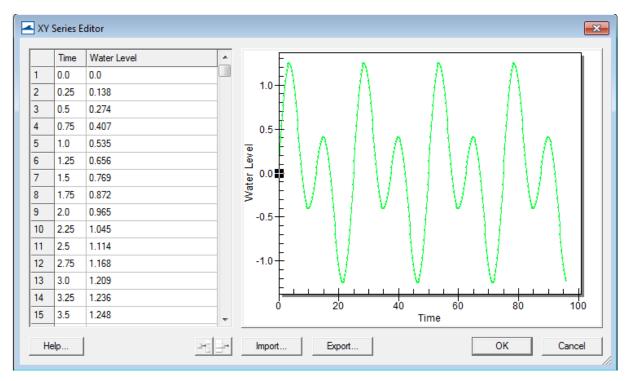
In the prompt, tick the check box next to Bathymetry type and the select "Scatter Set". Once selected, hit the "Scatter Options" button. In the Scatter options set the Interpolation method to Linear and the extrapolation to "Single Value" and enter a value of 2.

When SMS has reshaped the vertices along the edge of the model it is possible that some are just outside the bathymetry dataset. The extrapolation method defines how these are set, we have used a high elevation, and alternative option is to use the Inverse Distance Weighting option.

2D Mesh Multiple Polygon Properties
Mesh type
Patch 🔽
Bathymetry type
Scatter Set
Scatter Options Fill from edges
Material
Gravel
between selected polygons.
Help OK Cancel

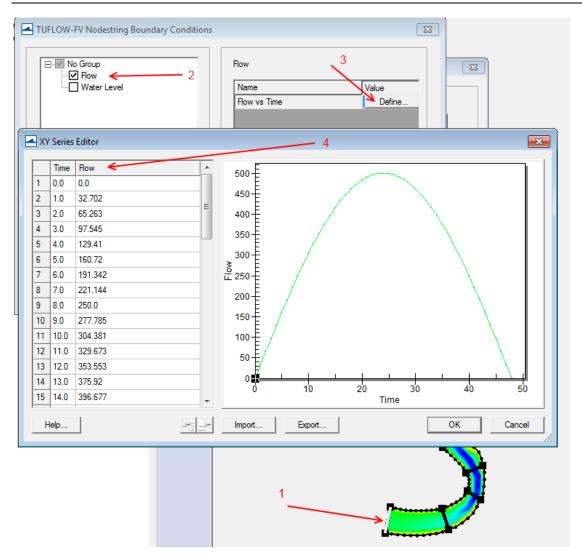
Interpolation	
Interpolation Options Interpolation: Linear Options Extrapolation: Single Value Single Value 2.0	Scatter Set To Interpolate From
Other Options Truncate values Min: 6.84312e-006	Time Step Interpolation Image: Single Time Step Image: All Time Steps Image: Multiple Time Steps Time Units Step size:
Max: 3.40282e+038	Start Time: End Time: OK Cancel

We next need to define the locations for our boundary conditions. Select the feature arc at the northern edge of the model and in the "attributes" dialogue, set this type to Boundary Condition, as per the image below. Then select Options...


Feature Arc Attributes
C None
Boundary conditions Options
Help OK Cancel

In the boundary condition dialogue, set the boundary type to "Water Level" and the select "Define" (step 2 in the image below).

TUFLOW-FV Nodestring Boundary Conditions	—
No Group Flow Water Level 1	Water Level Name Value water level vs time Define 2 4 III Help OK


Open the Tide.xlsx or Tide.csv in Excel (these are in the provided data), copy and paste the data into the series editor. All data can be copied at the same time; this does not need to be done one column at a time. The dialogue should look like the below.

At the southern end of the model select the feature arc and apply a flow boundary. The flow is in the "flows.xlsx". See also the image below.

The boundary data and locations can be changed after the mesh has been created. This is described further below.

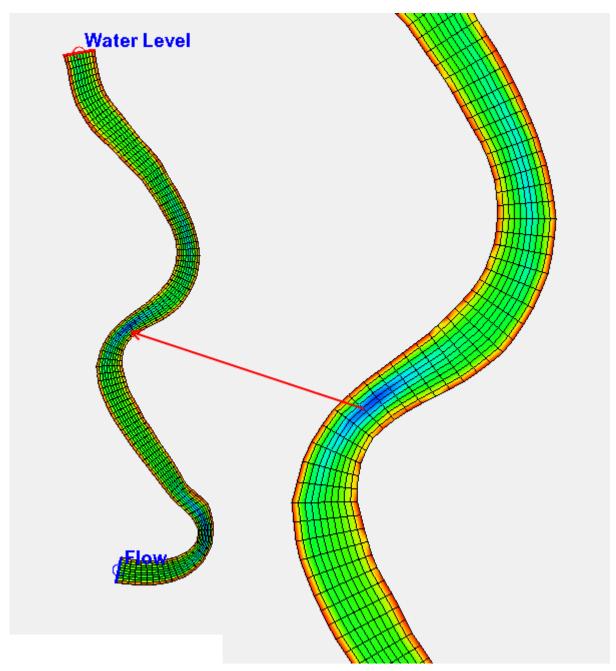
We are now ready to build the mesh from the map data. To do this select Feature Objects >> Map - > 2D Mesh.

In the 2D Mesh Options check the "Use area coverage" option. In the drop box ensure that the Land_Use layer is selected. When the mesh is created, this uses the land use layer for setting the material definition in the elements created. This can also be set individually on the polygons in the "Mesh Features" layer.

2D Mesh Options		
Delete existing mesh		
Merge triangles after meshing Copy coverage before meshing		
✓ Use area coverage		
Land_Use		
Help OK Cancel		

After the meshing is completed, turn off the scatter dataset and the map data:

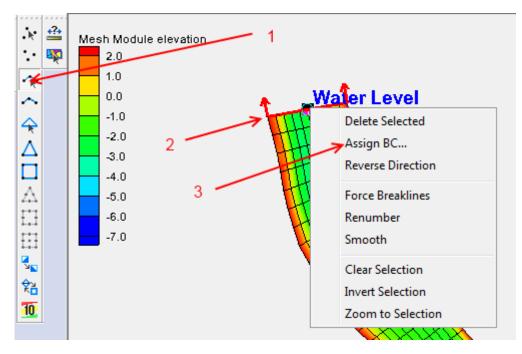
📮 🗹 🎆 Mesh Data
🖃 🗹 🏡 Mesh_Features
Z elevation
🗄 🗆 🗖 🖬 Scatter Data
RiverBend_Bathymetry
Elevation
🗄 🖅 🐺 Map Data
Mesh_Features
1


In the display options, turn on the elements, contours and nodestrings:

25. H. J.	2D Mesh Contours Vectors	
2D Mesh General Map	Vodes Option	ns Materials
Scatter	V Elements Option	ns
	Functional surface	15 Material numbers
	Contours	▼ Node numbers
	Vectors	Element numbers
	Vodestrings Option	ns
	Mesh quality Option	TS Vet/dry boundary
	Mesh boundary	

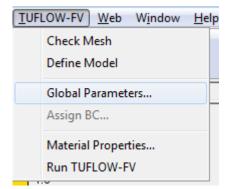
78

The mesh elements and boundaries should now be visible. The image below shows the entire mesh on the left and a zoomed in inset on the right. In the inset it can be seen that the mesh elements align with the flow direction. Whilst not mandatory, this is the preferred mesh alignment.



Screen Grab: Final Mesh

To modify the boundary data (we do not need to do this just yet, but it is useful to know), ensure you are in the mesh module (by clicking in the mesh in the table of contents), use the select nodestring button to select the nodestring, and then choose "Assign BC..." This is shown in the respective below.


To create a new boundary after the mesh has been created, the create nodestring tool () can be used. After a nodestring is created a boundary can be applied to it.

The next step in the modelling process is to assign the model parameters.

6.2.3 Model Parameters

To assign the model parameters access the "Global Parameters" from the TUFLOW FV menu item:

In the general tab, the default options are ok; these should be as per the image below:

TUFLOW-FV Global Parameter	
Activate parameter group	D Parameters Advanced Commands
Name	Value
Bottom Drag Model	Manning 🗸
CFL	1.0
Initial Water Level	0.0
Help	OK Cancel

In the "Time" tab, set the end time to 48, the model will be 48 hours.

Name	Value	
Time Format	Hours	•
Start Time	0	
End Time	48	

In the output options, set the following parameters

Name	Value		
Output Dir	\output\		
SMS Dat Output			
Dat Output Types	h,v		
Dat Output Interval	900.0		
Flux Output			
Flux Output Interval	0.0		

The HD and Advanced commands can be left unchanged. Hit OK to apply the changes.

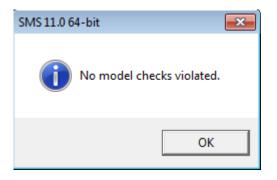
Once the global parameters are set, we need to set the Manning's value to be used for the three land use types (sand, gravel and vegetated). To do this select TUFLOW FV >> Material Properties.


<u>T</u> UF	LOW-FV <u>W</u> eb	W <u>i</u> ndow	Hel
	Check Mesh		
	Define Model		
	Global Paramet	ters	
	Assign BC		
	Material Prope	rties	
	Run TUFLOW-F	FV	
1.1			

For each of the three items listed on the left of the screen set a Manning's value. Suggested values are in the table below.

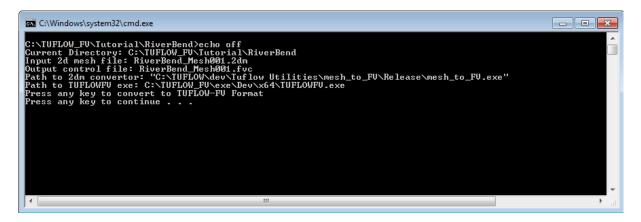
Land Use	Suggested Manning's n
Gravel	0.035
Sand	0.028
Vegetation	0.06

Table 6-1 River bend Tutorial: Suggested Manning's Values

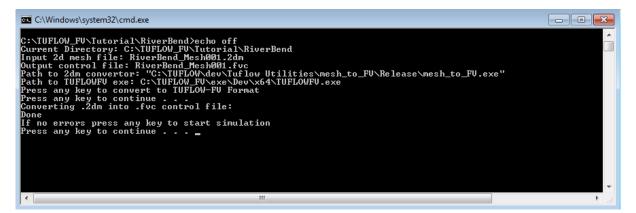

The model is now ready to run!

6.2.4 Running the Model

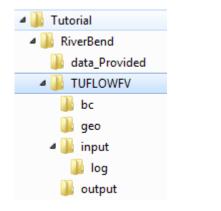
Ensure that the SMS project has been saved. The TUFLOW FV files will be created in a sub directory in the same location as the SMS project (.sms). To run the model select TUFLOW FV >> Run TUFLOW FV


TUF	LOW-FV <u>W</u> eb W <u>i</u> ndow	<u>H</u> elp
	Check Mesh Define Model	
-	Global Parameters Assign BC	-
	Material Properties	
	Run TUFLOW-FV	

The following dialogue should be displayed, stating that no model checks have been violated.



Select OK and a console window should be displayed; this will display the location of the inputs and outputs. This step is shown below.



Press any key to begin the conversion press any key. Once the conversion is completed, the console will pause.

In the same directory as the SMS project is saved a TUFLOWFV folder has been created:

In the TUFLOWFV\input\ directory which contains the control file (.fvc). This can be opened in a text editor. The first part of the control file is displayed below.


```
WBM_003_2012.tlf
 WBM_002.tcf O WBM_003_2012.tcf
                          WBM_002_2012.tlf
                                                    RiverBend Mesh001.fvc ×
Q.
                    , ,2,0
                        6,0
         . . 1,0 . . . . . . . .
 !TUFLOW-FV control file (.fvc) generated from SMS mesh file (.2dm) \P
 !.2dm file name: RiverBend Mesh001.2dm ¶
 !Mesh to FV build: 2012-05-AB¶
 !General Parameters ¶
 Bottom Drag Model == Manning 1
 CFL -== ·0.99
 Initial Water Level == 0.0¶
 !Geometry Commands ¶
 Geometry 2D == ... geo \RiverBend Mesh001.2dm 1
 !Time Commands 1
 Time Format == Hours ¶
 Start Time == 0¶
 End Time = 48
```

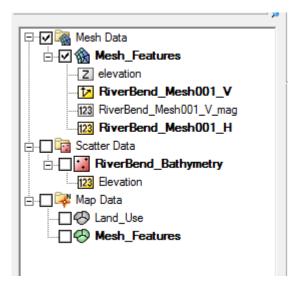
In the console window, press any key to start the model. If the model starts successfully, the console window should appear as below:

UltraEdit DOS Command Window	
Running simulation	A
Number of OpenMP threads=8	
Thread stacksize=4194304	
Entering timestep loop t = 0.000000 hrs. dt = 0.000×0.000 s. elapsed time = 0.0 s.	
U = 0.000000 ms. $U = 0.000 / 0.000$ s. class $U = 0.000$ s.	
Writing U datile output t = 0.000000 hrs.	
t = 0.11031 hrs. dt = 99.886 / 0.282 s. elapsed time = 0.8 s.	
$t = 0.1169972$ hrs. $dt = 27.000 \times 0.282$ s. $tapsed time = 1.1$ s.	
t = 0.250082 hrs. $dt = 8.0957 (0.279 s. elapsed time = 1.6 s.$	
Writing H datfile output. t = 0.250082 hrs.	
Writing U datfile output. $t = 0.250082$ hrs.	
t = 0.334826 hrs. $dt = 6.911 / 0.276$ s. elapsed time = 2.1 s.	
$t = 0.418399$ hrs. $dt = 10.168 \neq 0.275$ s. elapsed time = 2.5 s.	
t = 0.500790 hrs. $dt = 18.965 / 0.275$ s. elapsed time = 3.0 s.	
Writing H datfile output. t = 0.500790 hrs.	
Writing U datfile output. $t = 0.500790$ hrs.	
t = 0.584082 hrs. $dt = 17.878 / 0.275$ s. elapsed time = 3.5 s.	
t = 0.671601 hrs. $dt = 23.310 / 0.274$ s. elapsed time = 4.0 s.	
t = 0.750065 hrs. $dt = 5.168 / 0.272$ s. elapsed time = 4.5 s.	
Writing H datfile output. t = 0.750065 hrs.	
Writing V datfile output. t = 0.750065 hrs.	
t = 0.835696 hrs. $dt = 9.451 / 0.270$ s. elapsed time = 5.1 s.	
t = 0.919506 hrs. $dt = 16.948 / 0.269$ s. elapsed time = 5.6 s.	
t = 1.002837 hrs. $dt = 12.650 / 0.269$ s. elapsed time = 6.1 s.	E
Writing H datfile output. t = 1.002837 hrs.	
Writing U datfile output. t = 1.002837 hrs.	
t = 1.085845 hrs. $dt = 12.897 / 0.269$ s. elapsed time = 6.6 s.	
t = 1.167180 hrs. $dt = 14.981 / 0.267$ s. elapsed time = 7.2 s.	
t =1.251386 hrs. dt = 14.887 / 0.266 s. elapsed time =7.8 s.	
Writing H datfile output. t = 1.251386 hrs.	
Writing U datfile output. t = 1.251386 hrs. t = 1.33524 hrs. dt = $8.470 \neq 0.265$ s. elapsed time = 8.3 s.	
t = 1.418120 hrs. dt = 6.339 / 0.264 s. elapsed time = 8.9 s. t = 1.501124 hrs. dt = 4.484 / 0.264 s. elapsed time = 9.5 s.	
U = 1.591124 Mrs. $U = 4.404 / 9.204$ S. 214 pseu time = 7.5 S. Writing H datfile output t = 1.501124 hrs.	
Writing Watfile output $t = 1.501124$ hrs.	
t = 1.583508 hrs. dt = 13.414 / 0.263 s. elapsed time = 10.0 s.	
t = 1.667868 hrs. $dt = 13.117 + 9.263$ s. Elapsed time = 19.9 s.	
$t = 1.357601$ hrs. $dt = 0.223 \times 0.202$ s. clapsed time = 10.5 s.	
Writing H datfille output t = 1.751611 hrs.	
Writing U datile output $t = 1.751611$ hrs.	
	-

If the model fails to start successfully please see the troubleshooting section below.

Depending on computer speed and number of processors available, the model may take a few minutes to finish. On an i7 laptop (2 years old), the model runs in approximately 5 minutes. Once finished the console should appear as below:

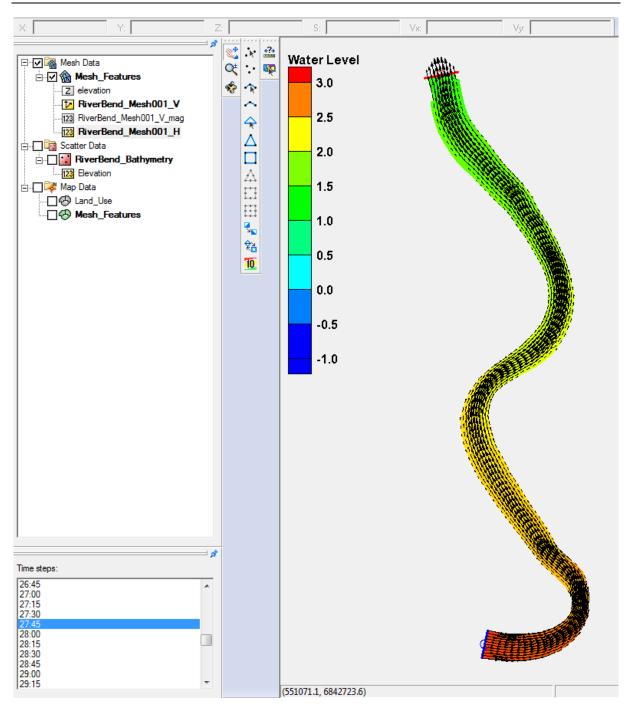
C:\Windows\system32\cmd.exe	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
t = $47, 835629$ hrs. dt = $22.392 / 0.315$ s. elapsed time = 374.2 s. t = 47.918664 hrs. dt = $16.021 / 0.314$ s. elapsed time = 374.7 s. Writing H datfile output. t = 48.005813 hrs. Writing U datfile output. t = 48.005813 hrs. Trying to open file: log/NierBend Mesh001.rst 0K. File unit: 103	
Closing file unit: 103 Trying to open file: log\RiverBend_Mesh001_ext_cfl_dt.csv 0K. File unit: 103	
Closing file unit: 103 Trying to open file: log\RiverBend_Mesh001_int_cfl_dt.csv OK. File unit: 103 Closing file unit: 103 Exiting timestep loop Number of timesteps executed = 57249 Elapsed system_time = 375.2676 s Run successful.	
De-allocating Domain Object: Closing output files Closing file unit: 101 Closing file unit: 102 Successful.	
Checking TUFLOW FU Licence (please wait)Done. Dongle 1381119. Releasing TUFLOW FU LicenceDone. Checking TUFLOW FU Threads Licence (please wait)Done. Dongle 1381119. Releasing TUFLOW FU ThreadsDone.	
Performing final cleanup tasks: Successful.	
Exiting IUFLOWFU	E
Press any key to continue	Ŧ


6.2.5 Reviewing Results

In the TUFLOWFV\output\ directory should be the results files, in the input we asked for two output h (level) and v (velocity). These files can be loaded in SMS either using the File >> Open interface or by dragging and dropping the files from Windows explorer.

🛃 Open					—
Look in:	🔒 output		•	🗢 🗈 💣 💷 🔻	
œ.	Name			Туре	Date modifie
Recent Places	🔘 RiverBend_N	/lesh001_H.dat		DAT File	19/06/2012 1
Hecenii Haces	🕑 RiverBend_N	/lesh001_V.dat		DAT File	19/06/2012 1
-					
Desktop					
Libraries					
Computer					
Network					
	•				P.
	File name:	"RiverBend_Mesh001_V.d	at" "Rive	rBend_Mesh0(Open
	Files of type:	All Files (*.*)		•	Cancel

These results will display in the table of contents in the Mesh Data.



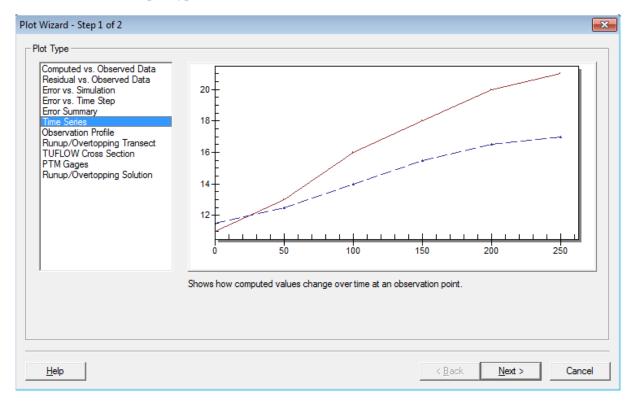
Turn off the Scatter and Map Data layers and in the display options:

Display Options			
2D Mesh	2D Mesh Contours Vectors		
General Map	▼	Options	Materials
Scatter	Elements	Options	Material boundaries
	Functional surface	Options	Material numbers
	Contours		▼ Node numbers
	Vectors		Element numbers
	► Nodestrings	Options	Vodal elevations
	Mesh quality	Options	Vet/dry boundary
	Mesh boundary		
Show option pages for			
existing data only			
Help	All On All Off		OK Cancel

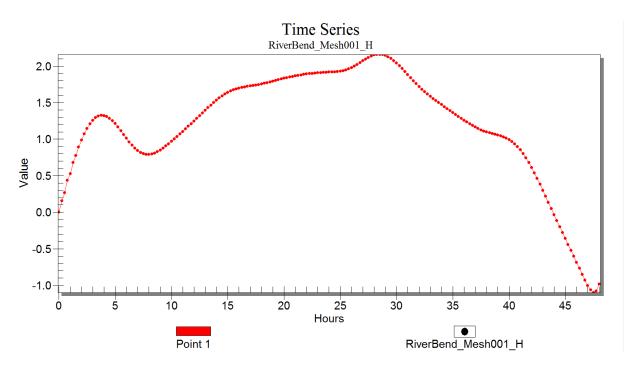
Step through the results in the "Time Steps" window. The contour increment can be changed in the display options. In the Mesh Data there are three scalar dataset available for viewing (elevation, RiverBend_Mesh001_H and RiverBend_Mesh001_V_mag). The elevation dataset does not change over time. There is one vector set (velocity) available.

To extract time series at a point, create a new Map Data coverage (by right clicking on Map Data). This should be set to an "Observation" type. This is shown in the image below.

New Coverage
Coverage Type:
Area Property Observation Particle/Drogue Shoals Spatial Data Stamping
⊡ · Models □ · FESWMS □ · Generic 2D Mesh □ · PTM □ · Gage
PTM TABS TUFLOW 1D Cross Sections 1D Networks 1D Water Level Lines
Coverage Name: Observation Attributes
OK Cancel


Once created, highlight the dataset and select the create feature point button (.). Create a feature point in the location you would like to extract results. Multiple points can be extracted at the same time.

Once the points have been created select Display >> Plot Wizard


Select the Time Series plot type.

Choose the dataset and time period to extract the results, as per the image below and then slect Finish, the plot will be displayed.

Plot Wizard - Step 2 of 2		×
Function type: Scalar Coverage: Observation Start time: 0:00 End time: 48:00 Use calibration data Band Show Points 1 Point 1 All On All Off	 Use active dataset Use selected datasets 2D Mesh (Generic 2D Model) 2 Mesh 2 RiverBend_Mesh001_V 2 RiverBend_Mesh001_H 	
<u>H</u> elp		< Back Finish Cancel

In later modules we cover using the point output in TUFLOW FV to output results directly in .csv format; this allows higher frequency results to be extracted than the map output.

6.2.6 Reviewing Mesh Performance

In this section we will look at the performance of the mesh in terms of timesteps required. The TUFLOW FV model uses and adaptive timestep which is based on the specified Courant-Friedrichs-Lewy condition (CFL parameter). The model timestep is calculated based on the cell size and depth. A poorly configured mesh with a single small cell in deep water can limit the timestep of the model. Therefore, after running the model it is beneficial to review the timestep required to run the model.

We will review the timestep information in SMS, using an output file created in the TUFLOWFV\input\log\ directory: In SMS open the RiverBend_Mesh001_ext_cfl_dt.csv file.

📥 Open				×
Look in:	🔒 log		• 🖿 🖆 🖬 •	
Ca.	Name	*	Date modified	Туре
Recent Places	RiverBend_N	/lesh001.log	19/06/2012 11:51	LOG File
Necenii: Haces	RiverBend_N	/lesh001.rst	19/06/2012 11:51	RST File
	🖲 RiverBend_N	/lesh001_ext_cfl_dt.csv	19/06/2012 11:51	Microsoft Exe
Desktop	RiverBend_N	/lesh001_geo.nc	19/06/2012 11:44	NC File
Libraries	RiverBend_N	/lesh001_int_cfl_dt.csv	19/06/2012 11:51	Microsoft Ex
Computer				
Network				
	•	III		•
	File name:	RiverBend_Mesh001_ext_cfl_dt.	csv 💌	Open
	Files of type:	All Files (*.*)	•	Cancel

When prompted for a format to open the file, select "use import wizard".

Open File Format	×
File: C:\TUFLOW_FV\RiverBend_Mesh001	ext_cfl_dt.csv
Use Import Wizard	
C Select File Type:	
12D ASCII Format (*.12da)	v
Help OK	Cancel

This wizard can be used to import a large variety of data into SMS. In this case the file is in a comma separated value (.csv) format. In the file import options select "Delimited" and select comma as the delimiter.

File Import Wizard - Step 1 of	2				×
File import options	Set the column delimiter	S :			
 Delimited Fixed Width 	Space Tab Semicolon Comma Other: Text qualifier: Treat consecutive delimiters as one Skip Leading Delimiters				
Start import at ro	ow: 1 ÷ ✓	Heading row			
1 id	ctrd_x	ctrd_y	<u>cfl dt min c</u>	fl_dt_mean	
2	0.5518732E+06	0.6841594E+07	0.422	0.522	
3	0.5518673E+06	0.6841586E+07	1.265	1.569	
4	0.5518713E+06	0.6841583E+07	2.125	596.479	
5 4	0.5518640E+06	0.6841575E+07	0.482	0.665	
4					Þ
Help			< Back	Next >	Cancel

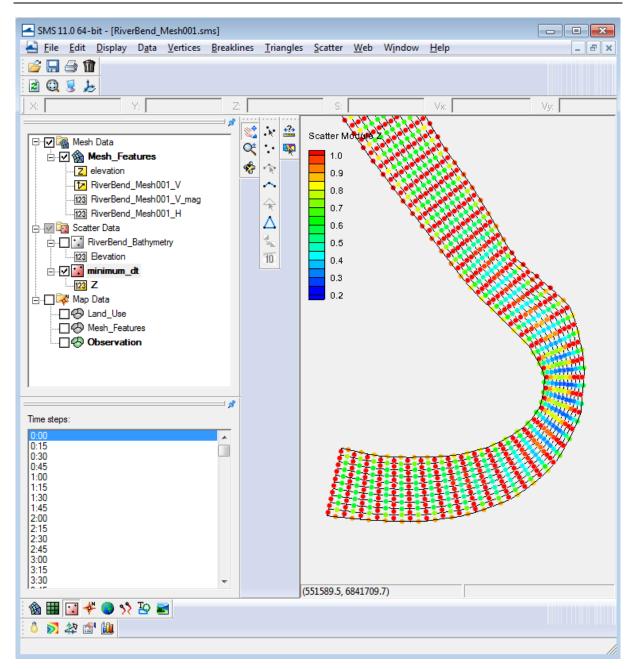
At the next prompt, turn off the triangulate data, and using the dropboxes, set the ctrd_x data to be mapped as X, the ctrd_Y to be mapped as Y and the dt_min (minimum timestep) to be mapped as Z. This is shown in the dialogue below:

Scatter S			▼ Filter C	pptions Ma	Triangulate data ximum edge lengt		te long triangles
Name: File previ	minimum_dt			Me	rge duplicate poin	its within tolerance:	0.0000100
Туре	Pt Name	•	х 🗸	Y 🗸	Z	<not mapp="" th="" 💌<=""><th></th></not>	
Header	id	_	ctrd_x	ctrd_y	cfl_dt_min	cfl_dt_mean	E
	1		0.5518732E+06	0.6841594E+07	0.422	0.522	
	2		0.5518673E+06	0.6841586E+07	1.265	1.569	
	3		0.5518713E+06	0.6841583E+07	2.125	596.479	
	4		0.5518640E+06	0.6841575E+07	0.482	0.665	
	5		0.5518781E+06	0.6841614E+07	0.390	0.475	
First 20 lir	nes displayed.						

Select "Finish" to open the data. There will be a new scatter dataset created, in the display options set the points to be visible, and select "Use contour colour scheme".

92

Display Options		×			
	Scatter Contours Vectors	Contours Vectors			
2D Mesh General Map	Points	Inactive color			
Scatter	✓ Use contour color scheme	Nautical grid			
	▼ Triangles	Point names			
	Boundary	Point numbers			
	Contours	Scalar values Options			
	Velocity vectors	Use contour color scheme			
	Breaklines				
	Z offset: 0.0				
Show option pages for existing data only					
Help	All On All Off	OK Cancel			


In the contour options, set the contour range to highlight the cells with small timesteps:

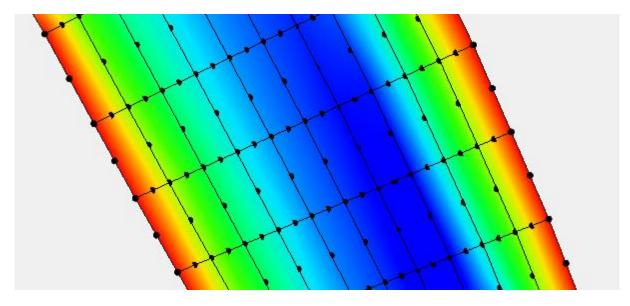
Z	
0.2590000033379	
43.060001373291	
y a range	
0.2	🔽 Fill below
1.0	🔽 Fill above
	Z 0.2590000033379 43.060001373291 y a range 0.2

The timesteps should now appear as a series of points, as per the image below. This can be used to identify the cells that are limiting the timestep of the model. In this case the limiting cells are in the deep water around the bends in the model. To increase the speed of the model we would need to relax the mesh definition in these areas.

In Section 6.2.8, we look at refining the mesh in a shallow area, to see how this impacts on model runtime.

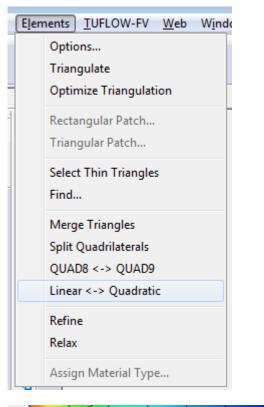
6.2.7 Troubleshooting

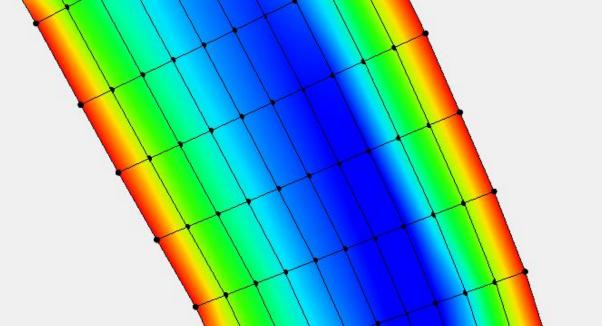
This section contains a list of the issues that may be encountered in the tutorial. If you are encountering a different problem, please email the log file, which can be found under TUFLOWFV\input\log directory to support@tuflow.com.


Error: fvdomain_constuct:init_dmn:fvmesh_construct:fvmesh_rd2dm:Linear elements only expected

BMT WBM

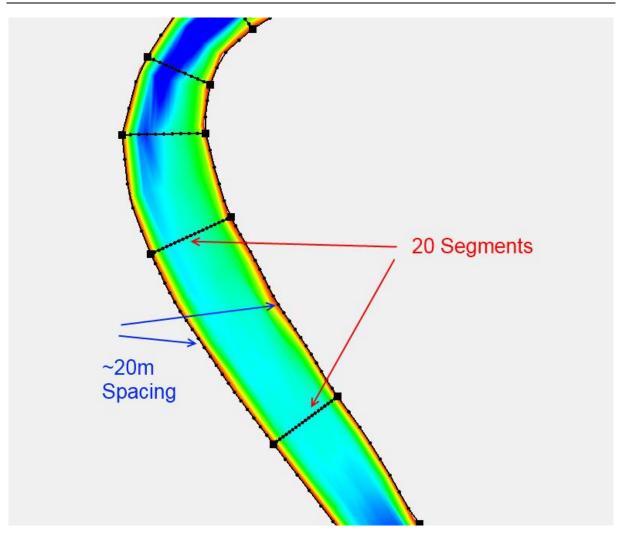
TUFLOW


This error indicates that SMS has quadratic elements enabled. This means that the cell sides have nodes; this is not yet supported by TUFLOW FV. The mid side nodes can be seen by making the nodes visible in the display options (increase the size to make these easier to see).

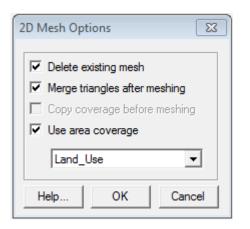


Mid Side Nodes Enables (Quadratic)

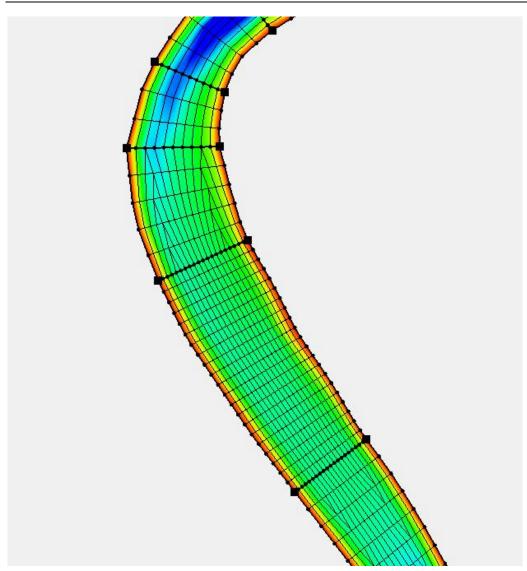
In order to convert from quadratic (mid side nodes) to linear (cell corner nodes only) select Elements >> Linear < - > Quadratic. This switches between the two options.


Cell Corner Nodes Only (Linear)

6.2.8 Optional Exercise: Refining the Mesh


In this section we will increase the resolution in the mesh to see how the impacts on the results and runtime of the model.

Save the project as RiverBend_Mesh002.sms to avoid overwriting the previous version of the model. Once a new project has been saved, in a shallow area of the model double to resolution in the model, see the image below for a suggested location.



Once the changes have been made to the feature arcs, rebuild the mesh (Feature Objects >> Map to Mesh). Make sure to tick the delete the existing mesh.

An example refined mesh is presented below:

If you are happy with the refined mesh, save the project and run the model again.

- How much did the model runtime increase?
- Did the timestep in the model change?

7 Tips, Tricks and Troubleshooting

7.1 Mesh generation tips

7.1.1 Primary goal

The primary goal when designing a flexible mesh is to **describe the key bathymetric and hydrodynamic features using the least, largest element sizes possible**. This is why flexible meshes are used; to optimise computational efficiency whilst achieving desired modelling accuracy.

7.1.2 Combine manual and automated mesh generation techniques

As shown in Section 5.1, creating a mesh is a combination of manual and automated steps. Keep it this way; maintaining a reasonable amount of manual intervention into the design of the mesh will ultimately produce a far more efficient mesh which will be more accurate and computationally efficient.

7.1.3 Follow the contours

Water typically flows along contour lines. Ensuring that elements also follow the contours (for example, by using contours as arcs that define polygons and mesh regions) will in general produce the most efficient meshes. Remember to also include top-of-bank lines, thalwegs of channels, etc.

7.1.4 Build piece by piece

The map module of SMS allows you to construct pieces of your model, each defined as a polygon which in turn is defined by a series of arcs. Then, each polygon can contain specific mesh properties. Developing a mesh framework in this stepwise manner is recommended; the approach allows the flexibility to adjust components of the mesh design relatively easily and provides the balance of manual and automated.

7.1.5 Courant limits

TUFLOW FV is an explicit model. This means that the **timestep of the model is dependent upon the element which has the highest Courant number**. The Courant number (or CFL condition) limits each timestep in a model simulation as follows:

 $\Delta t < \Delta x / (\sqrt{gd}) + v)$

Where Δt = timestep, Δx is a nominal cell length, g is gravity, d is water depth and v is velocity.

This means that a small element in deep water and/or with a high velocity will likely become the limit for the timestep and hence the overall simulation time. It is important to **make sure that the element responsible for limiting the CFL condition has to be the size and shape it is**.

7.1.6 Which mesh type? Pave or Patch?

Pave is a series of triangles, Patch is a more uniform patch of quadrilaterals.

When considering mesh types it is important to reflect upon TUFLOW FV and how its computational scheme performs. As described above, a model geometry is best when it describes the physical features in the most computationally efficient manner. Generally speaking a patch mesh type is the most efficient mesh type and should be applied where possible. Also, a patch is easier to control (ie it is easier to keep element size and shapes regular and according to what you intend).

A patch of elements can only be done if there are 4 arcs defining the patch. In many instances this is not possible; natural features are often more irregular. Under such circumstances a pave mesh area should be used. Often, a mesh consists of a series of patches with paving connecting them together.

7.1.7 Interaction between DEM generation and mesh generation

As a general rule a flexible mesh design aligns with bathymetric / topographic contours and features. The mesh design is therefore intrinsically linked to the bathymetry and the data used to define it. It is important to be aware of this and interlink the processes of DEM generation and mesh generation.

Table 7-1 describes the process typically followed to create a DEM using GIS techniques. Also shown are the corresponding interactions with the mesh generation that can occur at each step.

Step	DEM Generation in a GIS	Interactions with mesh generation
1	Data is imported and quality checked.	Elevations in the mesh can be exactly those elevations measured if the mesh is snapped directly onto a data point.
2	Breaklines are defined to ensure consistency of levels between data points ¹ .	Breaklines specified in a GIS can be applied as arcs in the mesh generator, ensuring that the mesh alignment lies precisely along each breakline.
3	A TIN is generated.	Extracting elevations for a mesh using a TIN is more accurate than a DEM, especially if the

 Table 7-1 Interaction between DEM generation and mesh generation

To address these issues within a GIS, breaklines are created.

¹ Bathymetric data often requires some interpretation and adjustments when creating a DEM or model geometry. In particular, it is important that key topographic / bathymetric features are consistent and persist along their length. Examples include:

[•] A raised levee (or elevated road) is a key hydraulic feature for a flood simulation; it is important therefore to ensure that elevations between successive points along the levee are preserved.

[•] Similarly, if the thalweg of a natural flow channel is not preserved then a blockage to flows can occur.

[•] If cross-section surveys of river channels are conducted there is often some interpretation required to define the bathymetry between each cross-section. This is particularly the case around river bends and if linear interpolation between successive cross-sections is performed.

Step	DEM Generation in a GIS	Interactions with mesh generation
		mesh alignment follows breaklines and is snapped to data points.
4	From the TIN, or via an alternative interpolation technique, a DEM is generated with a given resolution.	To avoid smoothing errors created by interpolating DEM elevations onto the mesh, a DEM resolution that is finer than the smallest element size is recommended.

7.1.8 The number of nodes and elements in a mesh

TUFLOW FV requires that there is consecutive numbering for nodes and elements in the input mesh file (the *.2dm file). In other words, if you have 100 nodes in your mesh then the highest node ID will be 100.

Mesh generation tools may allow you to have gaps in the ID lists of both nodes and elements, and this situation often occurs when you are adding or removing elements, etc during the mesh design process.

As a final step in the mesh generation process it is recommended that you **renumber** the mesh. To do this in SMS, follow the steps:

- Select a nodestring (any will do, however a boundary nodestring is preferred).
- Click on the menu command "Nodestrings -> Renumber" (or right click, and press "renumber").

This will renumber all the elements and nodes. Note that all TUFLOW FV inputs are input via x/y coordinates or nodestring IDs, so renumbering should not influence your model runs (although it may be pertinent to check this, especially if you have identified a particular element or node ID to extract results).

7.1.9 Does node and element numbering influence computational performance?

No, not really.

Renumbering a mesh does have a small influence on the computational performance of TUFLOW FV; a "better numbered" mesh will have smaller memory allocation.

This is different to other flexible mesh models (implicit finite element models such as RMA for example), where mesh design and numbering have significant impacts upon computational performance.

7.2 How do I design a mesh for a river bend?

Check out the tutorial exercise in Section 6.2.

7.3 My model runs too slow

Don't immediately go and request a bigger computer.

Remember that TUFLOW FV uses a flexible mesh and is limited by Courant criteria.

In other words, if you double model resolution then expect an 8 fold increase in simulation time (i.e. 4 times more cells and $\frac{1}{2}$ the timestep). Watch out for small elements in deep water or in high velocity situations.

Use the flexible mesh to your advantage by adjusting the mesh to match your requirements and computational capacity.

A flexible mesh can be nested. This is advantageous when model simulations are becoming excessively long, or when (say) a regional model is performed over a long period and local models are run for sub-periods from it. In such circumstances, select specific model outputs at sufficient resolution from which boundary conditions for the nested models can be extracted.

7.4 Common reasons why a model crashes or won't start

7.4.1 You made a simple error

You may find that your simulation has crashed, or some other syntax error in the inputs has caused it to stop. If this happens, open the log file to see what may have gone wrong. Be logical and thoughtful in your model preparation; often it's a simple mistake that causes the most frustration.

7.4.2 Nodestrings and boundary conditions don't match

Check the 2dm file and make sure that the nodestring you are assigning a boundary condition to is the correct one.

Two ways to do this:

- 1 Within SMS, use the "Select Nodestring" tool in the Mesh module and click on the nodestring that you intend to be the boundary condition. On the display bar at the bottom of the SMS window the nodestring ID will be displayed; this is the nodestring ID to use in the TUFLOW FV .fvc file.
- 2 Open the 2dm file in a text editor and search for "NS" at the start of the line. The NS lines provide a list of nodes that define the specific nodestring. The final node on a nodestring has a "-" prefix, then the following number is the nodestring ID. It is this last number, the nodestring ID, that TUFLOW FV uses to identify the boundary condition.

Nodestring order does not influence open boundaries; inflow (into the model domain) is assigned positive and outflow (out of the model domain) is negative irrespective of the node order in the nodestring.

7.4.3 Initial condition / boundary condition mismatch

It's a common situation. Modellers always try to avoid warming up a model and hope that putting a $10,000 \text{ m}^3$ /s inflow into an otherwise still model will run smoothly. TUFLOW FV is a relatively resilient model, but it has its limits.

As a quick fix, increasing the <u>Stability Limits</u> can assist. Otherwise a warmup of the boundary condition, transitioning from the initial state to the preferred boundary condition, should be considered.

7.5 Using multiple column csv files in a BC boundary

The BC command line (see Section 8.4.9) defines the csv file and column header associated with a particular boundary condition. Thus, the BC command line should have the column header of the time column and the boundary value column.

To illustrate, the following BC commands (extracted from an fvc file) define a series of 4 boundary conditions, each of which is a column in a multi-column csv file. BC 1 and 3 are nodestring flow (Q) boundaries, BC 2 is a cell inflow boundary (QC), and BC 4 is a nodestring water level boundary:

```
bc == Q, 1, ..\bcs\testbc.csv
bc header == Time,QYB1
end bc
bc == QC, 216.5, 956.4, ..\bcs\testbc.csv
bc header == Time,QYB2
end bc
bc == Q, 3, ..\bcs\testbc.csv
bc header == Time,QX1
end bc
bc == WL, 4, ..\bcs\testbc.csv
bc header == time,WSE
end bc
```

The first 5 lines of the corresponding csv file, which defines the values assigned to the boundaries, is as follows:

```
Time,QYB1,QYB2,QX1,WSE
0,28.31684659,28.31684659,28.31684659,9.35736
1,794.8538838,62.92003313,957.3421793,10.024872
2,802.7826009,60.56973486,981.4978653,16.965168
3,844.1251969,58.27607029,943.3474274,17.212056
4,868.477685,56.01072256,968.9588824,17.394936
5,901.9198808,53.80200852,997.8548085,17.535144
```

As shown, the BC command line defines the column headers which correspond to the first line in the csv file.

7.6 Structures

7.6.1 Overview

TUFLOW FV has a series of structure options, see Section 8.5 for a description of syntax.

Some important notes associated with the structures:

- Specification of an hQh relationship allows the user to insert practically any structure type (bridges, culverts, multiple structures, etc). This specification does however require some careful preparation of the hQh relationships.
- There are a number of alternative specifications of weirs, including weirs that are a given level above the existing ground level, or weirs that change elevation over time.
- "cell" type structures allow changes to be made to cell elevations (rather than cell faces). This is appropriate for simulating changing bed elevations over time.
- Flow can be in both directions. The "direction" of the structure is the same as the nodestring.
- For weirs, each cell face along the nodestring is considered as an individual weir, and flow is distributed accordingly. For hQh structures, flow is distributed uniformly across the nodestring according to the width of each cell face, and no adjustments are made to account for differences in water depths across the nodestring.

7.6.2 Using the hQh rating matrix

The hQh structure option in TUFLOW FV allows a flow relationship to be specified along a cell face, or several cell faces defined by a nodestring. Flow is determined from an "hQh" relationship; flow (Q) across the nodestring is determined by the upstream water level (h_{us}) and downstream water level (h_{ds}), as defined in a matrix of values (the hQh table). The following figure illustrates this.

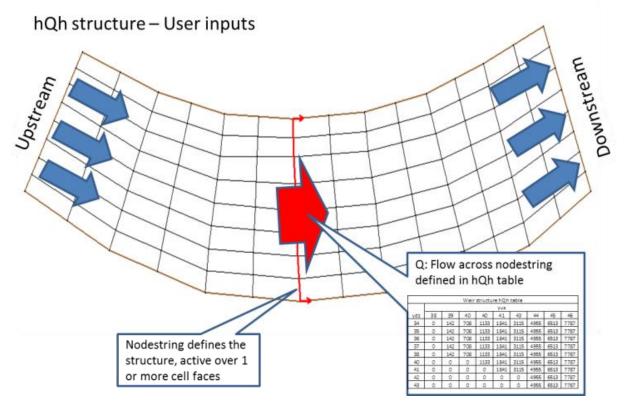


Figure 7-1 Illustration of the user inputs for an hQh structure

The logic process for computing structure flow is as follows:

- 1 Flows in the hQh table are distributed across the nodestring according to the relative widths of each individual cell face (a cell face being the connecting line between two cells). Thus, each individual cell face has a unique hQh table with Q values factored from the original hQh table according to the cell face width.
- 2 During a model simulation step, at each cell face the upstream and downstream water levels are used to obtain Q from the hQh matrix.
- 3 A check² is performed between the tabulated flow (Q_{hqh}) and that calculated using the Shallow Water Equation (Q_{SWE}) , where:
 - $\blacktriangleright \quad IF \ Q_{hqh} < Q_{SWE} \ THEN$
 - $\circ \quad \text{Apply } Q_{hqh} \text{ to cell face} \\$
 - ≻ ELSE
 - $\circ \quad \text{Apply } Q_{\text{SWE}} \text{ to cell face} \\$
- 4 Two momentum transfer options are available:
 - (a) Momentum is actively transferred through the structure based on Q_{hqh} and upstream velocity. This approach is recommended, especially for structures with relatively low energy losses (for example a bridge crossing where flow remains below the bridge deck). This is the default (and recommended) option³.
 - (b) The structure is set to be a reflecting wall (and the "source-sink" transfer of Q_{hqh} is applied with no momentum). This approach can be considered for structures that represent a significant obstruction to flow, such as a dam. This approach is not generally recommended.

The following figure provides an illustration of the computation of the hQh structure.

TUFLOW 💳 🥙

BMT WBM

² This check means that the hQh structure should represent a constriction to flow.

³ This option has actually been set as default in the latest TUFLOW FV release - the reflecting wall momentum transfer type is no longer available.

hQh structure – Computation

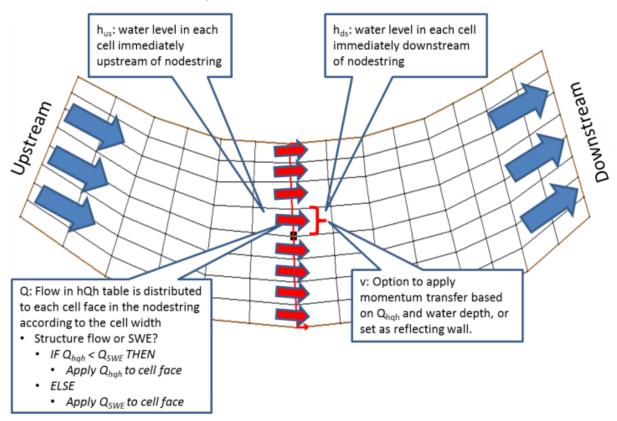


Figure 7-2 Illustration of the computational logic for an hQh structure

7.6.3 Calculating an hQh relationship

The TUFLOW FV hQh structure leaves the calculation of flow through the structure to the user. This makes the hQh structure flexible in its application (any structure, be it weir, culvert, pipe, etc can be applied) but also means that the user needs to create the hQh relationship. Options for doing this include:

- Calculation from first principles: This is relatively easy for simple structures.
- Use of other models: In particular, HEC-RAS is commonly used to establish flow conditions through structures. The calculated Q values from HEC-RAS simulations for a range of upstream and downstream water levels can provide a relatively straightforward means of creating a hQh matrix.

When deriving the hQh relationship, care must be taken to ensure that entry and exit losses are being applied appropriately. Depending upon the layout of the structure in the mesh design, the hQh relationship can represent all of the losses that occur in a structure or only internal losses. The following figure provides an illustration of this concept.

BMT WBM

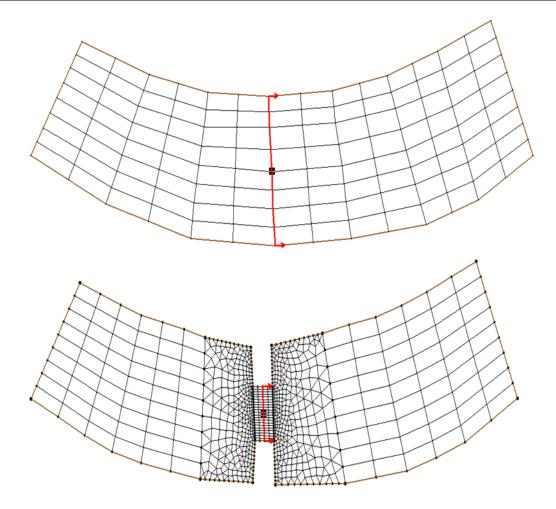


Figure 7-3 Examples of different approaches to defining a structure⁴

7.6.4 Logic controls

TUFLOW FV USER MANUAL BUILD 2010-10-AA

Logic controls adjust flow conditions through the structure according to a series of logical rules specified by the user. This is particularly useful for applications with adjustable structures, such as drop gates, sluices, etc.

Note that adjustable the adjustable weir options are suitable for simulation of levee breach and failures, etc.

Contact support@tuflow.com for more information.

⁴ The top image assumes that all losses (including entry and exit losses) are fully incorporated into the hQh relationship. The bottom image assumes that only internal losses (for example, friction losses through a culvert or pier losses through a bridge) are included in the hQh relationship, while entry and exit losses are simulated in the TUFLOW FV mesh.

7.7 TUFLOW FV is cell centred

The cells (or elements) are the computational blocks of the finite volume approach used by TUFLOW FV. This means that TUFLOW FV uses a single bed level value assigned to each cell in its calculations, then produces output that is applicable for each cell (cell velocities are derived from the values across each cell face).

This in itself is not a problem. However, at present SMS only permits values to be assigned at nodes; the corners of the cells. Thus, when TUFLOW FV reads the 2dm file during a model simulation the cell centred bed levels are interpolated from the corner node values. Then, when writing output via the "<u>datv</u>" output format, TUFLOW FV interpolates cell centred results back onto the corner nodes.

In many instances, this interpolation of both input bed levels and output results is not an issue. However, there may be instances where it is an issue. It is important to be aware of this constraint. The following sections provide some insight in this regard.

7.8 How do I get cell centred outputs?

SMS will not open a file with cell centred results and overlay it with the 2dm mesh file. If cell centred results are desired then there are some workarounds:

- Save the results as a netcdf file using the output command "<u>output == netcdf</u>". Several MatLab scripts (and corresponding executable files that can be used in the absence of MatLab) are then available to export results from this format file. Contact <u>support@tuflow.com</u> for more information on the scripts.
- 2 Open a scatter dataset in SMS. The output command "<u>output == dat</u>" will produce an output file to do this.

7.9 Specific insertions into the model geometry: the "Cell elevation" command

The command line "<u>cell elevation</u>" provides an option to insert elevations at some or all cells (or elements) in the model domain. As outlined in the command reference, this is done by providing a csv file that lists the x and y coordinates of the specific cells, then the z values. xy coordinates (instead of the element IDs) are used in case element renumbering is performed as part of the mesh design, however if preferred cell IDs can be used.

More than one "<u>cell elevation</u>" command line can be entered, and/or more than one point per cell can be entered.

Depending upon input preference each z value will overwrite the preceding z value entry, or an average of all points within each cell will be assigned.

This option can be used to address the issues described in Section 7.7. For example, the invert along a drain could be specified using a single csv file entry (perhaps called "drain 01.csv"). This csv file could be directly extracted from a GIS polyline.

Insertion of cell elevation files allows the user to build a number of specific features into the model geometry in a systematic, structured manner, starting from the underlying geometry in the 2dm file and adding specific features (roads for example).

Note that the cell elevation file option does not interpolate between successive points. If using the cell elevation file for continuous linear features (such as a road or levee), ensure that the point resolution is sufficiently fine to accurately represent the elevations along the feature.

7.10 Output of discharge along nodestrings

The command entry " $\underline{output} == \underline{flux}$ " will output fluxes (discharge) and other relevant parameters from defined nodestrings. Specifying this command line will output values for ALL nodestrings listed in the 2dm file.

Extraction of fluxes from the model simulation using this command is recommended as opposed to post processed extraction via SMS. The interpolation from cell centres to corner nodes can create discrepancies in the flux extraction in SMS (see Section 7.7 for more information).

7.11 Mass balance in TUFLOW FV

TUFLOW FV applies the finite volume numerical method for its computational scheme. A feature of the finite volume method is that it conserves mass to numerical precision for all cells and for the entire computational domain. This is valid down to single precision accuracy for the TUFLOW FV engine build used in the study.

Mass balance can be checked via flux outputs along nodestrings and also by specification of the "volume" output parameter specification (See Section 8).

7.12 Distribution of flows across a nodestring "Q" boundary condition

There are two⁵ ways to apply a flow boundary condition to a TUFLOW FV model:

- 1 Flow is distributed according to the width of each individual cell face along the nodestring (by setting "sub-type == 1" in the fvc input control file).
 - If <u>sub-type</u> == 1, then the flow (Q_i) entering each of the (i = 1,..., n) cells along the boundary is distributed from the total flow (Q_{tot}) according to the width (w_i) of each cell face:

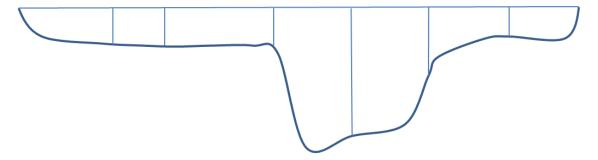
$$\mathbf{Q}_{i} = \mathbf{Q}_{tot} \frac{\mathbf{w}_{i}}{\sum_{i=1}^{n} \mathbf{w}_{i}}$$

2 Flow is distributed according to the width and depth of each individual cell face along the nodestring (by setting "sub-type == 3" in the fvc input control file).

⁵ Actually, there's 4 ways! But, sub-types 2 and 4 relate to a more specific boundary type applicable to 3D applications. Contact <u>support@tuflow.com</u> for more information.

If <u>sub-type</u> == 3, then the flow (Q_i) entering each of the (i = 1,..., n) cells along the boundary is distributed from the total flow (Q_{tot}) according to the width (w_i) of each cell face and also the depth (h_i) in each cell:

$$\mathbf{Q}_{i} = \mathbf{Q}_{\text{tot}} \frac{\mathbf{w}_{i} \mathbf{h}_{i}^{1.5}}{\sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{h}_{i}^{1.5}}$$


The logic for this formulation is derived from the Chezy equation describing friction flow;

$$\mathbf{Q} = \mathbf{A}\mathbf{C}(\mathbf{R}\mathbf{S})^{0.5}$$

where Q is flow, A is area (width w * depth h), C is the Chezy coefficient, R is hydraulic radius (approximately equal to depth h) and S is slope. From this is a proportionality between flow Q and water depth h:

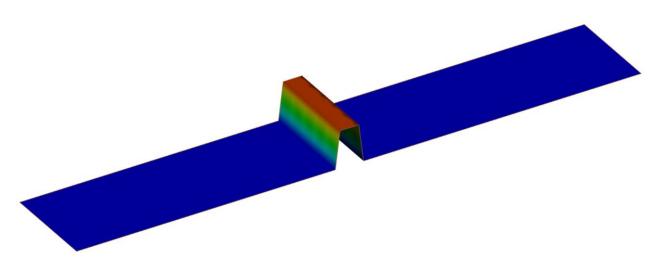
$$\mathbf{Q} \approx \mathbf{h}^{1.5}$$

What does this mean for a model simulation? It is important to consider the flow distribution along inflow boundaries that have a significant variation in bed levels across the nodestring; a common example is a boundary condition representing a floodplain and main channel, illustrated as follows.

For this boundary condition, application of a <u>sub-type</u> == 1 will result in significantly higher velocities on the floodplains compared to the main channel.

In comparison, application of a <u>sub-type</u> == 3 will distribute the flows so that there is more flow in deeper water, less flow in shallower water, and a generally uniform velocity distribution. This specification is recommended for the majority of inflow boundary conditions in overland and riverine situations.

7.13 How accurately does TUFLOW FV simulate weir flow when not applying a weir structure?


As a precursor to the following discussion, TUFLOW FV allows specification of the weir equation (Q = $CL(P+H)^{(3/2)}$, where coefficient C and crest level P are user inputs, see Section 8.5.1). Specifying a weir using this method provides an exact solution to the weir equation.

But, TUFLOW FV will simulate weir flow using the standard shallow water equations (SWE). How accurate is this approach?

BMT WBM

Consider the following test with a broad crested weir which is 5 m high and 250 m across with a 1000 m^3 /s discharge applied. Using the standard weir equation, the water level upstream of the weir is 6.765 m. Running a simulation without applying the weir equation (and using a Manning's n = 0.018), upstream water levels can differ.

A series of tests were applied with various cell resolutions across the weir and compared to the "exact" solution from the weir equation. The tests and the resulting elevation upstream are shown in the following table.

ID	Test	Elevation above weir crest level (m)	Images showing mesh resolution across weir (1, 2 and 4 cells)
1	SWE, 1 cell width	1.12	
2	SWE, 2 cell width	1.55	
3	SWE, 4 cell width	1.64	
4	Application of a weir nodestring structure, $C = 1.7$	1.77	
5	SWE, 1 cell width, but with the Manning's friction increased across the weir ($n = 0.035$)	1.30	
6	Standard Weir Equation	1.77	

As shown, the nodestring structure (test 4) perfectly matches the weir equation (test 6). The solution using the shallow water equations (SWE) tends to underpredict head loss across the structure. If the number of cells defined across the weir crest is increased, a more accurate solution is obtained. Note also that the solution is dependent upon friction (which is one of the dominant physical processes being simulated by the SWE, as shown in test 5).

Concluding, it is recommended that in situations where an accurate representation of weir flow is required a nodestring structure that inserts the weir equation into the solution scheme is used. In other situations, using the SWE (in other words, just letting TUFLOW FV simulate weir flow without any

TUFLOW

BMT WBM

direction specification of weir structures) may be entirely acceptable. Importantly, the modeller should be aware that differences do exist between these two approaches.

8.1 List of Available Commands

Bottom roughness	Cell elevation	cell wet/dry depths
<u>CFL</u>	Decay Rate	Density air
Density water	Display dt	Echo geometry
Eddy viscosity	End material	End output
End scalar	End Time	ğ
Geometry 2d	global eddy viscosity	global scalar diffusivity
ic		
Include	Include mslp	Include salinity
Include sediment	Include temperature	Include wind
Include wavestress	Initial Water Level	Latitude
Limiter	Material	Mode split
Momentum mixing model		
Nscalar	<u>Output</u>	Output dir
Output interval	Output parameters	Output points file
Reference MSLP	Restart	Reset time
<u>Scalar</u>	Scalar diffusivity	Scalar mixing model
Sediment Control File	Settling Velocity	Spatial order
Spherical	Stability Limits	Start time
Timestep	Time format	Timestep limits
Write restart	Wind Stress Params	

8.2 Command line syntax

Each command line entry is defined by a descriptor, followed by a "==", followed by the specified value (or values) for the particular command line. The syntax in the tables that follow use a triangular bracket to specify a value that requires user specification.

• As an example, for the command line "*Include* == *<file name>*" the syntax inserted into the fvc would be (for example) "*Include* == *includefile.inc*".

For command lines that have an option of several values, a ";" separator is specified in the syntax.

• For example, the command line "*Time format == <Hours;ISODate>*" requires a choice of two options, so that the command line will be either "*Time format == Hours*" or "*Time format == ISODate*".

For command lines that have a series of values to specify, a "," separator is specified in the syntax.

• For example, the command line "*Timestep Limits* == <*min timestep* (*s*), *max timestep* (*s*)>" requires two entries in the command line, such as "*Timestep Limits* == 0.1, 10.0".

Some command lines specify an "on or off" switch for a particular parameter.

• In such cases a "1" means "on" (or TRUE) and a "0" means "off" (or FALSE).

When specifying file names in the fvc file it is recommended that relative file paths are specified. This will make the TUFLOW FV simulation files more portable (it's easier to move an entire folder structure in this way). However, a full path name can also be inserted if preferred (a common example is when output files are written to a separate folder on another disk drive).

Strictly speaking, TUFLOW FV inputs are entered as integers (whole numbers), reals (float, or decimal numbers) and characters (text). The command line entries in the following tables adhere to this syntax, although real numbers can be inserted as integers.

• For example, the default "*CFL* == 1.0" can also be entered as "*CFL*==1".

Finally, take note that *not all command lines have to be included in an fvc file*! A simple model setup often requires only a small list of command lines, while the remaining model parameters etc are either unused or remain as the default value.

8.3 Control File Layout

See Section 3.9 for further discussion on the layout of the fvc file.

Section	Command Categories		
<u>Definition</u>	General definitions for the simulation, what modules are included, locations of files, etc		
Time	Time Format and Reference Time		
	Start / End Times		
<u>Geometry</u>	Mesh file		
	3D geometry definitions		
Solution Scheme	Wetting / drying, CFL limits, etc		
<u>Turbulence</u>			
Physical Parameters			
<u>Materials</u>	Material properties (roughness, mixing parameters, etc)		
Initial Conditions	Initial model state (initial parameters, restart files, etc)		
Boundary Conditions	Global (winds, waves, rainfall, etc)		
	Nodestring (external boundaries, water levels, flows, etc)		
	Cell (source)		
	Node (point source)		
<u>Output</u>	Output directory		
	Prescribe model output		
Additional Modules	Depending upon your preference, these commands can be included in the above structure (for example, your Definition category may include specification to include the advanced modules) or as separate entries (for example, if you started with a HD model then added salinity as a subsequent step).		
	Structures		
	<u>3D</u>		
	Salinity, temperature, density		
	Heat exchange		
	Sediments		
	Water Quality		

Table 8-1 Recommended TUFLOW FV Control File Sections

8.4 Control File Structure (General)

8.4.1 Definition

Command Line	Default	Description
Display Depth == <minimum display<br="">depth (m)></minimum>	0.01	Allows the user to specify the minimum cell depth, for which a cell will be displayed as "wet" in SMS.
Logdir == <path></path>	Same location as fvc file.	Specifies the directory for writing the log file output. If not specified the Logdir defaults to the control file directory or to a /log subdirectory
Include == <file name></file 	No default.	where this has been first created by the user. At any location in the fvc file an include file can be included. At this location, all commands contained in the "include file" will be read as if they are listed in the fvc file.
Debug == <0;1>	0	Detailed program echo if set = 1.
Units == <metric; English; Imperial; US Customary></metric; 	Metric	Option to apply "US Customary" (or "English" or "Imperial") units. Input and output units are as follows: Elevation, distance = feet Discharge = cfs Manning's friction is adjusted accordingly Constant eddy viscosity value = ft2/s Note that currently the units are valid only for 2D hydrodynamics; please contact <u>support@tuflow.com</u> if considering using customary units for additional modules.

8.4.2 Time

Command Line	Default	Description
Time Format == <hours;isodate></hours;isodate>	Hours	Specifies the format for time specification both in the control file and any boundary condition files.
		'Hours' is the default and requires a decimal hour specification e.g. Start Time $== 3.0$.

Command Line	Default	Description
		'ISODate' requires a date specification in the form $dd/mm/yyyy$ HH:MM:SS (or some truncation thereof), e.g. Start Time == 03/01/2009 03:00. Where inputs or output times are in decimal time, this will be relative to the reference time.
Reference Time == <input output<br=""/> reference time>	For <u>Time Format</u> == Hours, the default is 0. For <u>Time Format</u> == ISODate, the default is 01/01/1990 00:00:00.	Sets the model reference time.
<pre>Start Time == <simulation start="" time=""></simulation></pre>	No default.	Specifies the start time for the simulation. For <u>Time Format</u> == Hours, units are in decimal hours. For <u>Time Format</u> == ISODate, inputs are in date form <i>dd/mm/yyyy</i> <i>HH:MM:SS</i> (or some truncation thereof).
End Time == <simulation end<br="">time></simulation>	No default.	Specifies the end time for the simulation. See the <u>Time Format</u> command for input formats.
<pre>Timestep == <constant (s)="" timestep=""></constant></pre>	If not entered then variable timestep applied, see <u>timestep</u> <u>limits</u> .	Specifies the value of a constant timestep that is to be used during the simulation.
<pre>Timestep Limits == <min (s)="" (s),="" max="" timestep=""></min></pre>	No default.	Specifies the maximum and minimum timestep that are allowed when timestep is allowed to vary according to the Courant- Frederic-Lewy stability criterion. See also <u>CFL</u> .
Display dt == <display timestep<br="">(s)></display>	300 s (5 minutes).	Allows the user to specify the simulation interval between displaying timestep information.
CFL == <global maximum courant number></global 	1.0	Sets the courant Courant–Friedrichs–Lewy condition used in internal and external mode timestep calculation. The default value is 1., which is the theoretical stability limit.

Command Line	Default	Description
		Sometimes models can be successfully 'overclocked' with CFL>1.
CFL internal == <global maximum<br="">courant number></global>	1.0	Sets the courant Courant–Friedrichs–Lewy condition used in timestep calculation for the advective terms. The default value is 1., which is the theoretical stability limit.
CFL external == <global maximum<br="">courant number></global>	1.0	Sets the courant Courant–Friedrichs–Lewy condition used in timestep calculation for the free-surface gravity wave terms. The default value is 1., which is the theoretical stability limit.
CFL_dx min == <dx_min></dx_min>	1.0	TBC

8.4.3 Geometry

Command Line	Default	Description
Geometry 2d == <mesh (.2dm)="" file=""></mesh>	No default.	Specifies the model 2D geometry input file. The input file should be an sms generic <u>.2dm</u> <u>mesh file</u> . Only linear triangular and quadratic elements are supported. Cell elevations can be set separately, see also <u>cell elevation file</u> command. Eg: geometry 2d ==\geo\ mesh_name.2dm
<pre>Cell elevation file == <cell elevation<br="">file (.csv), xytype, ztype></cell></pre>	If not entered then geometry reverts to geometry 2d file.	 This command can be used to set the cell bed elevations for some or all cells in the model domain. If xytype = cell_ID or is blank: The csv file contains a first line header then the columns: cellID, Z If xytype = coordinate: The csv file contains a first line header then the columns: c X,Y,Z If ztype = average:

Command Line	Default	Description
		• all z values identified within a given cell will be averaged.
		 If ztype = overwrite: the cell bed level will be the last z value read.
		Note that more than one cell elevation file can be listed, each entry supersedes the previous.
Echo Geometry == <0;1>	1	Setting this to 0 stops the model from writing a .geo (geometry) output file.
Spherical == <0;1>	0	 Specifies that the model is in spherical coordinates. 0 = Cartesian where input coordinates are
		 in metres. 1 = Spherical where input coordinates are in degrees.
Partition == <val></val>		TBC

8.4.4 Solution Scheme

Command Line	Default	Description
Cell dry/wet depths == <cell depth<br="" dry="">(m), cell wet depth(m)></cell>	<1.0 x 10 ⁻⁶ , 1.0 x 10 ⁻² >	Sets the cell wetting and drying depths in metres. The drying value corresponds to a minimum depth below which the cell is dropped from computations (subject to the status of surrounding cells). The wet value corresponds to a minimum depth below which cell momentum is set to zero, in order to avoid unphysical velocities at very low depths.
Cell wet/dry depths == <cell depth<br="" dry="">(m), cell wet depth(m)></cell>	As above	In case you are wet before you are dry ;)
Stability Limits ==	No stability limits (i.e. the model does not	Specifies a maximum water level and maximum velocity, which define an unstable model if exceeded.

Command Line	Default	Description
	undertake	Description
<maximum maximum<br="" wl,="">velocity></maximum>	stability checks).	The run will stop when these limits are exceeded.
<pre>Spatial Order == <1;2 (horizontal), 1;2 (vertical)></pre>	<1,1>	 Specifies the spatial order of accuracy of the solution schemes used in the simulation. 1 = first order scheme 2 = second order scheme The first-order schemes assume a piecewise constant value of the modelled variables in each cell, whereas the second-order schemes perform a linear reconstruction. Higher order spatial schemes will produce more accurate results in the vicinity of sharp gradients, however they will be more prone to developing instabilities and ere more.
		 developing instabilities and are more computationally expensive. As a general rule of thumb, initial model development should be undertaken using low- order schemes, with higher-order spatial schemes tested during the latter stages of development. If a significant difference is observed between low-order and high-order results then the high-order solution is probably necessary, or alternatively further mesh refinement is required. Second order spatial accuracy will typically be required in the verticel direction when twing
		required in the vertical direction when trying to resolve sharp stratification. See also the <u>horizontal gradient limiter</u> and <u>vertical gradient limiter</u> commands, which may be used to specify the TVD limiting schemes employed during the higher-order reconstructions.
<pre>Include Coriolis == <0;1></pre>	1 (true)	Includes the Coriolis force source term from the momentum conservation equations. 0 for false, 1 for true.
<pre>Include invisc == <0;1></pre>	1 (true)	Include the inviscid flux terms in the momentum and mass transport equations. 0 for false, 1 for true.
<pre>Include visc == <0;1></pre>	1 (true)	Include the viscous flux terms in the momentum and mass transport equations. 0 for false, 1 for true.

~		
Command Line	Default	Description
<pre>Include bed friction == <0;1></pre>	1 (true)	Option to turn off bed friction.
<pre>Include parallel transport == <0;1></pre>	1 (true), but only if a <u>spherical</u> coordinate system is applied.	Includes the parallel transport terms in the momentum flux equations (spherical coordinates only). 0 for false, 1 for true. These terms ensure that advective tendencies follow great circle paths on the sphere. This will be significant for very large domains (ocean scale) or at high latitudes but may be neglected for smaller domains.
<pre>Equation of state == <unesco; direct=""></unesco;></pre>	UNESCO	Sets the model for calculating the density of water in baroclinic simulations. UNESCO: use the UNESCO equation of state (Fofonoff and Miller, 1983); Direct: the salinity tracer is assumed to be a direct proxy for density.
Horizontal gradient limiter == <lcd;mlg></lcd;mlg>	LCD	 Sets the Total Variation Diminishing (TVD) limiting scheme for 2nd order horizontal spatial integration scheme. The options are LCD (Limited Central Difference) and MLG (Maximum Limited Gradient). LCD is the less compressive option and the least computationally intensive MLG is the most compressive option and the most computationally intensive
Horizontal AlphaR == <alphah (depth),<br="">alphaV (velocity), alphas (scalars)></alphah>	<1.0, 1.0, 1.0>	This command can be used to apply a reduction factor to high-order cell reconstruction gradients, which may be useful in stabilising a higher-order simulation. Default is <1.0, 1.0, 1.0>, i.e. no gradient reduction, whereas <0.0, 0.0, 0.0> would revert to a first-order scheme.
Mode split == <0;1>	0	твс твс
External mode 2D == <0;1>	U	

8.4.5 Turbulence

Command Line	Default	Description
<pre>Turbulence update dt == <timestep (s)=""></timestep></pre>	If not specified this will occur at every model timestep.	Specifies the timestep for vertical turbulence mixing eddy-viscosity and scalar-diffusivity term updating.
Scalar mixing model == <none; constant;<br="">Smagorinsky; Elder; Warmup></none;>	None	 Sets the scalar mixing model. See also <u>global</u><u>scalar diffusivity</u>. None: no horizontal scalar mixing Constant: specify a constant isotropic scalar diffusivity Smagorinsky: specify the Smagorinsky coefficient –calculates an isotropic scalar diffusivity Elder: specify longitudinal and transverse coefficients – calculates a non-isotropic diffusivity
<pre>Momentum mixing model == <none; constant;="" smagorinsky=""></none;></pre>	None	 Sets the horizontal eddy viscosity calculation method. See also <u>global eddy viscosity</u>. None: no horizontal momentum mixing Constant: specify a constant eddy viscosity Smagorinsky: specify the Smagorinsky coefficient –calculates a local eddy viscosity
<pre>Kinematic viscosity == <kinematic (m<sup="" value="" viscosity="">2/s)></kinematic></pre>	1.0e-6	Specifies the kinematic viscosity.
Global horizontal eddy viscosity == <eddy viscosity;<br="">coefficient/s (m²/s;-)></eddy>	0.0	 Globally sets the eddy viscosity coefficient. This is dependent on the turbulence model. Constant: specify a constant eddy viscosity Smagorinsky: specify the Smagorinsky coefficient. See momentum mixing model command to set momentum mixing turbulence model.
Global horizontal eddy viscosity limits == <vl>, <v2></v2></vl>		ТВС
Global horizontal	0.0	Globally sets the diffusivity or diffusivity model coefficients. This is dependent on the

Command Line	Default	Description
<pre>scalar diffusivity == <diffusivity; coefficient/s (m²/s;-)></diffusivity; </pre>		 turbulence model used. Constant: specify a constant isotropic scalar diffusivity Smagorinsky: specify the Smagorinsky coefficient Elder: specify longitudinal and transverse coefficients – calculates a non-isotropic diffusivity See scalar mixing model command to set scalar mixing turbulence model.
Global horizontal scalar diffusivity limits == <v1>, <v2></v2></v1>		TBC
Diffusivity limiter dt == <v1></v1>		ТВС
External turbulence model dir == <dir></dir>		TBC

8.4.6 Physical Parameters

Command Line	Default	Description
<pre>g == <gravitational acceleration="" m="" s<sup="">2></gravitational></pre>	9.81	Gravitational acceleration.
Latitude == <latitude in<br="">degrees (-ve for Southern Hemisphere)></latitude>	0.0	Sets the latitude for Coriolis calculations. Not required when a spherical coordinate system is used (see also <u>Spherical</u>).

8.4.7 Materials

Command Line	Default	Description

Command Line	Default	Description
<pre>Bottom drag model == <' Manning' ; 'Ks'></pre>	Manning	This command can be used to specify the bottom drag model to be used in the simulation. The default model is Manning, in which case a Manning's "n" coefficient should be specified. An alternative model, assumes a log-law velocity profile and requires specification of a surface roughness length-scale, "ks". The <u>global bottom roughness</u> and material <u>bottom roughness</u> commands can be used to specify the bottom roughness value/s to be used in the model.
Global bottom roughness == <bottom roughness)=""></bottom>	No default.	Globally sets the bottom roughness value. The bottom roughness specification depends on the <u>Bottom drag model</u> , and may be a Manning's "n" coefficient (default) or an equivalent Nikuradse roughness, "ks" (m).

8.4.7.1 Description of Material Block Commands

Command Line	Default	Description
Material == <material #="" id=""> End Material</material>	One block required for each material type specified in geometry file (see also <u>.2dm mesh</u> <u>file</u>).	This command indicates the beginning of a material block, specifying properties for cells with material id #. Material properties are listed in the following rows. Example material block: material == 1 bottom drag == 0.020 eddy viscosity == 0.20
		scalar diffusivity == 60.0, 6.0 end material Note that several material types can be grouped into a single material block: material == 4,6,9,11,12

Commend I in a	D-f14	Description
Command Line	Default	Description
Material group == <group></group>		TBC
<pre>Inactive == <0;1></pre>	0	If 1 (true) then cells with material ID are excluded from the computational domain.
Bottom roughness == <roughness value=""></roughness>	Default to global value.	Sets the bottom roughness value. The bottom roughness specification depends on the <u>Bottom drag model</u> , and may be a Manning's "n" coefficient or an equivalent Nikuradse roughness, "ks" (m).
Surface roughness == <roughness value></roughness 	0.0	Sets the surface roughness value (for example, ice cover).
<pre>Horizontal eddy viscosity == <eddy (m²="")="" coefficient="" s;-="" viscosity;=""></eddy></pre>	Default to global value.	This command defines the eddy viscosity value/model-coefficient for a given material type (overwriting any default or globally defined values). This is dependent on the turbulence model used (constant or Smagorinsky). See <u>momentum mixing model</u> command to set momentum mixing turbulence model.
Horizontal eddy viscosity limits == <dv_limit1, dv_limit2></dv_limit1, 	Default to global value.	
Horizontal scalar diffusivity == <diffusivity; coefficient (m²/s;-)></diffusivity; 	Default to global value.	This command defines the scalar diffusivity value/model-coefficient/s for a given material type (overwriting any default or globally defined values). This is dependent on the turbulence model used (constant, Smagorinsky or Elder). See <u>scalar mixing model</u> command to set scalar mixing turbulence model.
Horizontal scalar diffusivity limits == <ds_limit1, ds_limit2></ds_limit1, 	Default to global value.	ТВС
Vertical eddy viscosity limits == <dv_limit1,< td=""><td>Default to global value.</td><td>TBC</td></dv_limit1,<>	Default to global value.	TBC

Command Line	Default	Description
dv_limit2>		
<pre>Vertical scalar diffusivity limits == <ds_limit1, ds_limit2=""></ds_limit1,></pre>	Default to global value.	TBC
End Material		This command indicates the end of a material block.

8.4.8 Initial Conditions

Command Line	Default	Description
<pre>Initial Water Level == <water (m)="" level=""></water></pre>	No default.	Globally sets the initial water level. Alternative options for setting Initial Conditions are the <u>IC</u> or <u>Restart</u> commands.
<pre>Initial Condition 2d == <initial (.csv)="" condition="" file=""></initial></pre>	Not used if not entered.	Reads in a comma separated variable file of initial conditions. This csv file contains initial conditions for each cell of the mesh. The following column headers are required in this file: ID, WL, U, V, [Sal], [Temp], [Sed_1,], [Scal_1,] An example of the command usage and corresponding CSV file is given below: ic ==\bc\initial_conditions_001.csv and the contents of initial_conditions.csv: ID, WL, U, V, Scal_1, Scal_2, Scal_3 1, 0.300, 0.000, 0.000, 1.000, 0.000, 0.000
<pre>Initial scalar profile == <initial (.csv)="" condition="" file=""></initial></pre>	Not used if not entered.	TBC

Command Line	Default	Description
Initial condition OGCM == <ic></ic>	Not used if not entered.	TBC
Restart == <restart file name></restart 	Not used if not entered.	Loads model initial conditions from a restart file. Unless the <u>reset time</u> command is used the simulation start time will be set to the timestamp in the restart file. See also <u>write</u> restart command.
Reset Time == <1;0>	0 (false).	This command resets the model start time to be equal to the value specified using <u>Start</u> <u>Time</u> when a restart file is used (see also <u>Restart</u>). Without this command or when set to 0 (false), the start time is set equal to the restart file timestamp.

8.4.9 Boundary Conditions

Command Line	Default	Description
Grid definition file == <netcdf file defining grid coords (.nc)> Grid definition</netcdf 		Specifies a netcdf filename that defines grid coordinates to be used in mapping input/output files to the model mesh. This command should be used in conjunction with the W10_grid, MSLP_grid and Wave_grid <u>BC</u> types to establish the grid to mesh mapping. Multiple BCs can point to the same grid definition. TBC
<pre>variables == <v1, v2, v3></v1, </pre>		
<pre>Grid definition == <x0, alp,="" dx,="" dy,="" mx,="" my,="" typ="" y0,=""></x0,></pre>		 Geometry definition parameters for grid definition file, including Origin (x0, y0) Grid size (dx, dy) Angle (alp) Number of cells (mx, my) Typ (TBC)

8.4.10 Description of BC Block Commands

Command Line	Default	Description
<pre>BC == <bc [id],="" [input="" file]="" type,=""> End bc</bc></pre>	One block required for each boundary type.	 This command indicates the beginning of a Boundary Condition (BC) Block. See Table 8-1 for list of boundary types. Boundary conditions can be: Global (winds, waves, rainfall, etc) Nodestring (external boundaries, water levels, flows, etc) The [id] value is the nodestring identifier from SMS (or, if using SMS versions earlier than 11.0, the sequential order of the nodestrings in the 2dm file). Cell (source) The [id] value is the cell ID from the geometry. Possible commands that can be used to specify a BC block are: BC cale factor BC update dt
BC Header == <header1,header2,></header1,header2,>		 Includes MSLP Allows the user to specify the CSV input file column headers or NETCDF file variable names (overwriting the defaults in Table 8-2). This command should immediately follow a BC command. For example, the following lines apply a cell inflow at the cell which lies at the xy coordinate 1025.5, 950.5. It looks in the specified csv file for columns: Time, Tailwater_Flow, Turbidity: BC == QC, 1025.5, 950.5,\bc\ tailwater_discharge.csv BC header == Time, Tailwater_Flow, Turbidity End BC Another example shows a nodestring flow boundary applied to nodestring 1, which looks in the specified csv file for columns: Time, INFL1A:

Command Line	Default	Description
		BC == Q, 1,\bc\ flowbc.csv
		BC header == Time, INFL1A
		End BC
Sub-type == <subtype></subtype>	1	 This command is only applicable for a <u>"Q"</u> type nodestring flow boundary condition. If subtype = 1 (default) The flow boundary condition
		 is distributed across a nodestring by cell width. If subtype = 3
		 If subtype = 3 The flow boundary condition is distributed across a nodestring by cell width and depth.
		Specific to 3D applications:
		• If subtype = 2
		 The flow boundary condition is a source inflow into the first string of cells inside the nodestring boundary condition, with flow
		 distributed as per subtype =1. If subtype = 3 The flow boundary condition is a source inflow into the first string of cells inside the nodestring boundary condition, with flow distributed as per subtype =3.
BC offset ==		Specify offset/s to be applied to boundary condition values.
<var1_offset, [Var2_Offset],></var1_offset, 		
		TBC
BC time offset == <timeoffset></timeoffset>		
		Specify scale factors to be applied to boundary
<pre>BC scale == <var1_scale_factor, ,="" [var2_scale_factor]=""></var1_scale_factor,></pre>		condition values.
BC flag == <1;0>		0: False
DC 11ag \1,0/		1: True
	1	1. 1100

Command Line	Default	Description
BC time scale == <timescale></timescale>		TBC
BC update dt == <update timestep=""></update>	Updated at every model timestep.	Allows the user to specify the update timestep for a boundary condition. This is especially useful for gridded boundaries. If not specified the BC is updated at every model timestep.
<pre>Includes MSLP == <1;0></pre>	1	Allows the user to specify whether the various water level boundary conditions include an inverse barometer offset. The default assumption (1) is that the boundary does already include an inverse barometer component.
		If Includes MSLP == 0 then an offset determined by the local MSLP difference from the reference MSLP is applied at the boundary.
Layer == <layer></layer>		Vertical layer to apply boundary condition.
Nlayers == <nlayers></nlayers>		Number of vertical layers in boundary condition.
Vertical distribution == <vdfil></vdfil>		Csv file containing the vertical distribution of layers.
Vertical coordinate type == <ztyp></ztyp>		Options for coordinate type: • Elevation • Depth • Sigma • Height
BC nodestrings == <id1,,idn></id1,,idn>		TBC
Sub type == <wsm></wsm>		 Applicable for wave inputs: 1 = cell-centred radiation-stress gradient area integration 2 = face-centred radiation-stress boundary integration

Command Line	Default	Description
		This command indicates the end of a BC
End BC		block.

Table 8-2 BC types

ВС Туре	BC Description	ID	Input File	Default Columns Header⁴
AIR_TEMP	ТВС			
AIR_TEMP_GRID	ТВС			
CLOUD	ТВС			
CLOUD_GRID	ТВС			
СР	ТВС			
CYC_HOLLAND	Parametric cyclone wind and pressure field	N/A	CSV	TIME, X, Y, PO, PA, RMAX, B, RHOA, KM, THETMAX, DELTAFM, WBGX, WBGY
FB	Sediment bed flux	Cell	CSV	TIME, FLUX_SED_1,
FBM	ТВС			
FC	Cell scalar flux	Cell	CSV	TIME, [FLUX_SAL]. [FLUX_HEAT], [FLUX_SED_1,], [FLUX_SCAL_1,]
FCM	ТВС			
LW_NET	ТВС			
LW_NET_GRID	ТВС			
LW_RAD	ТВС			
LW_RAD_GRID	ТВС			
MSLP_Grid	Mean sea level pressure field	Grid	NETCDF	TIME, MSLP
OBC	Fully specified boundary condition	External nodestring	CSV	TIME, WL, U, V, [SAL], [TEMP], [SED_1,], [SCAL_1,]
OBC_PROF	ТВС			
OBC_CURT	ТВС			
OBC_GRID	ТВС			
OP	Zero-gradient	External nodestring	N/A	Not Required

⁶ Note that the header names listed here are defaults; if a "bc header ==" line is not included in the fvc file then these column header titles are required. If however a "bc header ==" line is included in the fvc then the header descriptions then match the column header in the csv file.

ВС Туре	BC Description	ID	Input File	Default Columns Header ⁶
PRECIP	ТВС			
PRECIP_GRID	Precipitation grid	Grid	NETCDF	
Q	Nodestring flow	External nodestring	CSV	TIME, Q, [SAL], [TEMP], [SED_1,], [SCAL_1,]
QC	Cell inflow (m ³ /s) - uses internal concentration during outflow.	Cell	CSV	TIME, Q, [SAL], [TEMP], [SED_1,], [SCAL_1,]
QCA	Cell inflow (m ³ /s) - uses specified concentration during outflow.	Cell	CSV	TIME, Q, [SAL], [TEMP], [SED_1,], [SCAL_1,]
QCM	ТВС			
QG	Global Cell Inflow (m/s) - uses internal concentration during outflow.	N/A	CSV	TIME, Q/A, [SAL], [TEMP], [SED_1,], [TRACE_1,]
QGA	Global Cell Inflow (m/s) - uses specified concentration during outflow.	N/A	CSV	TIME, Q/A, [SAL], [TEMP], [SED_1,], [SCAL_1,]
REL_HUM	ТВС			
REL_HUM_GRID	ТВС			
RNS	Reflective, no Slip	External nodestring	N/A	N/A
RS	Reflective, free slip.	External nodestring	N/A	N/A
SCALAR	ТВС			
SCALAR_PROF	ТВС			
SCALAR_CURT	ТВС			
SW_RAD	ТВС			
SW_RAD_GRID	ТВС			
SURF_TEMP	ТВС			
SURF_TEMP_GRID	ТВС			
TRANSPORT	ТВС			
W10	Global 10m Wind	N/A	CSV	TIME, W10_X, W10_Y
W10_Grid	10m Wind field	Grid	NETCDF	TIME, W10_X, W10_Y
Wave	Wave parameter field	Grid	NETCDF	TIME, HSIGN, TPS, DIR, FORCE_X, FORCE_Y
Wave_coupled	ТВС			
WL	Water level	External nodestring	CSV	TIME, WL, , [SAL], [TEMP], [SED_1,], [SCAL_1,]
WL_CURT	ТВС			
WLNR	ТВС	External	CSV	ТВС

ВС Туре	BC Description	ID	Input File	Default Columns Header ⁶
		nodestring		
WLS	Sloping Water Level	External nodestring	CSV	Time, WL_A, WL_B, , [SAL_A, SAL_B], [TEMP_A, TEMP_B], [SED_1_A, SED_1_B,], [SCAL_1_A, SCAL_1_B,]
ZG	Zero gradient boundary	External nodestring	N/A	N/A
ZVAR	ТВС			

8.4.11 Output

Command Line	Default	Description
Output dir == <filepath></filepath>	Same location as FVC file.	Specify the output directory for results files. E.g. output dir == D:\FVWBM\Output\ or output dir ==\Output\
Write restart dt == <time (hours)=""></time>		Writes a restart file (to the directory where the .fvc file sits) at the time specified. The restart file is a binary file. The restart file is read in using the <u>restart</u> command.
<pre>Restart overwrite == <0;1></pre>	1	 Overwrite restart file at each restart dt step or create a series of restart files (each file has a counter included in the name). 1 means the restart file will be overwritten 0 means the restart file will not be overwritten

8.4.12 Description of Output Block Commands

Command Line	Default	Description
Output == <output format></output 		This command indicates the beginning of an output block, and specifies the type of output. Table 8-3 presents the output types available.
 		Output block properties include: <u>Output Interval</u> <u>Output Parameters</u>

Command Line	Default	Description
end output		Output Points File
		Example output block:
		output == datv
		output parameters == h,v,scal_1,scal_2
		output interval == 900
		end output
Suffix == <suffix></suffix>		Output file name suffix option.
Output Parameters		Specify the required output parameters; see Table 8-4.
== <many></many>		Note that not all parameters are supported depending on output type (see the <u>output</u> command and Table 8-3 for details).
Output points file == <file name<="" td=""><td></td><td>This provides the name of a file with the coordinates of output points, required for a points <u>output</u> type.</td></file>		This provides the name of a file with the coordinates of output points, required for a points <u>output</u> type.
(.csv)>		This file is a CSV format containing x and y coordinates of the desired output locations, additional columns are ignored. E.g.
		Output points file ==\Points.csv
		Points.csv contents: X, Y ID (not used) 314000., 7368000., Point 1 300000., 7350000., Point 2
	If not specified	Specify the start time for an output request.
<pre>Start Output == <time></time></pre>	this will default to the simulation start time.	The time format must be consistent with the simulation <u>time format</u> .
	If not specified	Specify the final time for an output request.
Final Output == <time></time>	this will default to the simulation end time.	The time format must be consistent with the simulation <u>time format</u> .
Output Interval == <timestep (s)=""></timestep>	0, resulting in output at every timestep!	Output interval in seconds.
Output compression	0	If $= 1$ then output compression is activated.

Command Line	Default	Description
== <0;1>		
		This command indicates the end of an output
End Output		block.

Table 8-3 Output Types

Output Format	Description	Parameters	Relevant Commands
dat	Sheet output at cell centroids in SMS .dat format.	H, V, D, Z, Sal, Temp, Sed_1,, Scal_1,, W10, MSLP, Hsig, T[, Wvdir, Wvstr	Output Parameters Output Interval
	Note that this output format can be read in as a scatter dataset and not as a data file attached to a 2dm geometry file (see "datv" below).		
datv	Sheet output at cell vertices (nodes) in SMS .dat format. This is the required format to view results in SMS.	H, V, D, Z, Sal, Temp, Sed_1,, Scal_1,, W10, MSLP, Hsig, T[, Wvdir, Wvstr	<u>Output Parameters</u> <u>Output Interval</u>
flux	Flux across nodestrings specified in .2dm file.	N/A. This will output flow, and salinity, temperature, sediment and scalar fluxes as required.	Output Interval
	Note that entering a flux output type will provide outputs at ALL nodestrings listed in the input 2dm geometry file.		
mass	Outputs a mass comma separated variable file with mass output.	N/A. This will output flow, and salinity, temperature, sediment and scalar "mass" as required.	<u>Output Interval</u>
netcdf			
netcdfv			
points	Outputs result timeseries at specific locations as a csv file. A points file needs to be read in using <u>Output Points</u> <u>File</u> command.	H, V, D, Z, Sal, Temp, Sed_1,, Scal_1,, W10, MSLP, Hsig, Tp, Wvdir, Wvstr	Output Points File Output Parameters Output Interval
Transport	ТВС		

Table 8-4 Output Parameters

Parameter	Description
Air_temp	Air temperature (degrees Celsius)
Bed_mass_total	Total bed mass (kg/m²)

Bed_mass_Layer_#Bed mass in layer # (kg/m²)BedloadBed load (g/m/s)Bedload_TOTALTotal Bed load (g/m/s)DWater depth (m)Deposition_total(g/m²/s)DZBBed elevation change (m)FLOW(m³/s)HWater surface elevation (m)Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)Pickup_total(g/m²/s)ReL_humRelative humidity (%)Rel_humRelative humidity (%)SaltSalinity concentration (TBC)Salt_mass(su m³)Salt_mass(su m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment toad (g/m/s)Sedload_TOTALTotal Sediment flux of fraction # (10³ kg/s)Suspload_TOTALTotal Suspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Suspload_TOTALTot	Parameter	Description
Bedload_TOTALTotal Bed load (y/m/s)DWater depth (m)Deposition_total(g/m²/s)DZBBed elevation change (m)FLOW(m³/s)HWater surface elevation (m)Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrectpitation rate (m/day)Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m²/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#Suspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_ad_TOTALTotal Sediment load (g/m/s)SedloadSediment load (g/m/s)Sedload_TOTALTotal Suspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)<	Bed_mass_Layer_#	Bed mass in layer # (kg/m²)
DWater depth (m)Deposition_total(g/m²/s)DZBBed elevation change (m)FLOW(m³/s)HWater surface elevation (m)Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)ReL_humRelative humidity (%)ReL_humRelative humidity (%)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#/LEUXSuspended sediment flux of fraction # (10³ kg)Sed_#/LEUXSuspended sediment flux of fraction # (10³ kg)Seduad_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transp	Bedload	Bed load (g/m/s)
Deposition_total(g/m²/s)DZBBed elevation change (m)FLOW(m³/s)HWater surface elevation (m)Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Prickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Sat_flux(psu m³/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (hg)Sed_#_BED_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)Sed_matSuspended load (g/m/s)Supload_TOTALTotal Suspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²)(Hydrodynamic module)(Hydrodynamic module)TauxCurrent related effective bed shear stress component (N/m²)TauwWave related effective bed shear stress (N/m²)TaucxCombined effective current/wave bed shear stress (N/m²)TaucxCombined effective current/wave bed shear stress (N/m²)TauxKombined effective current/wave bed shear stress (N/m²)TauxKate stress (N/m²)TauxKombine effective current/wave bed shear stress (N/m²)TauxKate stress (N/m²)TauxKate str	Bedload_TOTAL	Total Bed load (g/m/s)
DZBBed elevation change (m)FLOW(m³/s)HWater surface elevation (m)Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_flux(psu m³/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (10° kg/s)Sed_af_FLUXSuspended sediment flux of fraction # (10° kg)Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TauxCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	D	Water depth (m)
FLOW(m³/s)HWater surface elevation (m)Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)ReL_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#Suspended concentration # (kg)Sed_#_ABED_MASSSediment thear of fraction # (l0³ kg/s)SeddadSediment toad (g/m/s)SusploadSuspended load (g/m/s)SusploadSuspended load (g/m/s)SusploadSuspended load (g/m/s)SusploadSuspended load (g/m/s)SusploadSuspended load (g/m/s)SusploadSuspended load (g/m/s)SusploadSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Deposition_total	(g/m²/s)
HWater surface elevation (m)Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)ReL_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#Suspended concentration of fraction # (10³ kg/s)Sed_#_BED_MASSSediment bed mass of fraction # (10³ kg/s)Sed_#_AMASSSuspended sediment flux of fraction # (10³ kg/s)SedloadSediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Sediment load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Suspload_TOTALCotal Suspended load (g/m/s)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective current/wave bed shear stress (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	DZB	Bed elevation change (m)
Heat_content(Degrees Celsius m³)LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Mstedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³)Sed_#Supended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (l0 ⁻³ kg/s)Sedload_TOTALTotal Sediment load (g/m/s)Supload_TOTALTotal Supended load (g/m/s)Supload_TOTALTotal Supended load (g/m/s)Supload_Sedramet stress (N/m²) (Hydrodynamic module)TaucSurface shear stress (N/m²) (Kediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	FLOW	(m ³ /s)
LW_radDownward long wave radiation flux (W/m²)MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)ReL_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m²/s)Salt_mass(psu m²)Sed_#Supended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10³ kg/s)SedloadSediment load (g/m/s)Supload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)SusploadSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Н	Water surface elevation (m)
MSLPMean sea level pressure (hPa)Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)Ret_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_LUXSuspended sediment flux of fraction # (10³ kg/s)Sed_#_AMSSSuspended sediment fraction # (10³ kg/s)SedloadSediment load (g/m/s)Suspload_TOTALTotal Sediment load (g/m/s)Suspload_TOTALTotal Sent wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TauxCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²)	Heat_content	(Degrees Celsius m ³)
Netsedrate_total(g/m²/s)Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_LUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_AMASSSuspended sediment flux of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Supload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Swpload_TOTALTotal Sent wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TauxCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	LW_rad	Downward long wave radiation flux (W/m²)
Pickup_total(g/m²/s)PRECIPPrecipitation rate (m/day)Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_LUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)Sedoad_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Supended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	MSLP	Mean sea level pressure (hPa)
PRECIPPrecipitation rate (m/day)Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#Suspended concentration of fraction # (kg)Sed_#_BED_MASSSediment bed mass of fraction # (10 ⁻³ kg/s)Sed_#_LUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)SuploadSuspended load (g/m/s)Suspload_TOTALTotal Sediment load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Netsedrate_total	(g/m²/s)
Rel_humRelative humidity (%)RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_flux(psu m³/s)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Swy_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Pickup_total	(g/m²/s)
RhowWater density (kg/m3)SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)SedloadSediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)SwyradDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress (m/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	PRECIP	Precipitation rate (m/day)
SalSalinity concentration (TBC)Salt_flux(psu m³/s)Salt_mass(psu m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)Suspended load (g/m/s)Suspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Rel_hum	Relative humidity (%)
Salt_flux(psu m³/s)Salt_mass(psu m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)Suspended load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Rhow	Water density (kg/m3)
Salt_mass(psu m³)Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress (N/m²) (Sediment transport module)TauwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Sal	Salinity concentration (TBC)
Sed_#Suspended concentration of sediment fraction # (mg/L)Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucxCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Salt_flux	(psu m ³ /s)
Sed_#_BED_MASSSediment bed mass of fraction # (kg)Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)Sw_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucvCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Salt_mass	(psu m³)
Sed_#_FLUXSuspended sediment flux of fraction # (10 ⁻³ kg/s)Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)SW_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Sed_#	Suspended concentration of sediment fraction # (mg/L)
Sed_#_MASSSuspended sediment mass of fraction # (10 ⁻³ kg)SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)SW_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²)	Sed_#_BED_MASS	Sediment bed mass of fraction # (kg)
SedloadSediment load (g/m/s)Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)SW_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucxCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Sed_#_FLUX	Suspended sediment flux of fraction # (10 ⁻³ kg/s)
Sedload_TOTALTotal Sediment load (g/m/s)SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)SW_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Sed_#_MASS	Suspended sediment mass of fraction # (10 ⁻³ kg)
SusploadSuspended load (g/m/s)Suspload_TOTALTotal Suspended load (g/m/s)SW_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²)	Sedload	Sediment load (g/m/s)
Suspload_TOTALTotal Suspended load (g/m/s)SW_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²) (Sediment transport module)	Sedload_TOTAL	Total Sediment load (g/m/s)
SW_radDownward short wave radiation flux (W/m²)TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective bed shear stress component (N/m²) (Sediment transport module)	Suspload	Suspended load (g/m/s)
TaubBed shear stress (N/m²) (Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective bed shear stress component (N/m²) (Sediment transport module)	Suspload_TOTAL	Total Suspended load (g/m/s)
(Hydrodynamic module)TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²)	SW_rad	Downward short wave radiation flux (W/m ²)
TausSurface shear stress (N/m²) (Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²)	Taub	
(Hydrodynamic module)TaucCurrent related effective bed shear stress component (N/m²) (Sediment transport module)TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²)		
(Sediment transport module) Tauw Wave related effective bed shear stress component (N/m²) (Sediment transport module) Taucw Combined effective current/wave bed shear stress (N/m²)	Taus	
TauwWave related effective bed shear stress component (N/m²) (Sediment transport module)TaucwCombined effective current/wave bed shear stress (N/m²)	Tauc	
(Sediment transport module) Taucw Combined effective current/wave bed shear stress (N/m²)	Тани	
Taucw Combined effective current/wave bed shear stress (N/m ²)	Tauw	
	Taucw	
		(Sediment transport module)

Command File (FVC) Reference

Parameter	Description
Temp	Temperature (degrees Celsius)
Temp_flux	(degrees Celsius m ³ /s)
THICK	Total bed thickness (m)
Trace_#	Tracer concentration (units/m ³)
Trace_#_FLUX	Tracer flux (units m³/s)
Trace_#_MASS	Tracer mass (units)
TSS	Total suspended solids concentration (mg/L)
TURBZ	Output of vertical turbulence parameters, which includes: • TURBZ_TKE (m ² /s ²) • TURBZ_EPS (m ² /s ³) • TURBZ_L (m) • TURBZ_SPFSQ (/s ²) • TURBZ_BVFSQ (/s ²) • TURBZ_NUM (m ² /s) • TURBZ_NUH (m ² /s) • TURBZ_NUS (m ² /s)
V Volume	Velocity vector (m/s) (m ³)
W	Vertical velocity (m/s)
W10	10 m wind speed vector (m/s)
WQ_ALL	Output of water quality parameters
WQ DIAG ALL	Output of water quality parameters
Wvht	Wave height (m) - typically significant wave height
Wvper	Wave period (s) - typically peak wave period
Wvdir	Wave direction (degrees true coming from)
Wvstr	Wave stress vector (N/m ²)
ZB	Bed elevation (m)

8.5 Control File Structure (Advanced)

The following command line entries are required to include additional features and modules of TUFLOW FV beyond the standard 2D hydrodynamic.

8.5.1 Structures

Command Line	Default	Description
<pre>Structure == <structype, id=""></structype,></pre>	No default.	Marks the beginning of a structure block.Structype can be:Nodestring

Command Line	Default	Description
 End Structure		 The structure is situated between one or more elements (ie – along the cell faces, defined by a nodestring) The [id] value is the nodestring identifier from SMS that represents the structure in the model geometry. Cell The structure is a series of cells, defined by a polygon. Presently, this defines a series of cells with an adjustable bed elevation (although other cell definition structures will come online in future). No [id] value is required.
Name == <sname></sname>		Name of structure
Flux function == <fluxtype></fluxtype>	None	If <u>structype</u> = nodestring then the flux function type is required. Flux function type can be: • Wall: • a solid wall (Q=0) • Matrix: • an hQh relationship defines the structure (contained in the flux file) • Weir: • A broad crested weir structure with a fixed crest level • Weir_dz: • A broad crested weir structure with a crest level dz above existing bed levels • Weir_adjust: • A broad crested weir structure with an adjustable crest level • Weir_dz_adjust: • A broad crested weir structure with an adjustable crest level • Weir_dz_adjust: • A broad crested weir structure with an adjustable crest level • Weir_dz_adjust: • A broad crested weir structure with an adjustable crest level dz above existing bed levels

Command Line	Default	Description
Cell function == <celltype></celltype>	None	If <u>structype</u> = cell then the cell function type is required. Cell function type can be:
		 ZB_adjust: Adjustable bed elevations for a series of cells with a specified crest level DZB_adjust: Adjustable bed elevations for a series of cells with a specified crest level dz above existing bed levels
Flux file == <hqh< th=""><th></th><th>If $\underline{\text{fluxtype}} = \text{matrix}$ then a flux file is required.</th></hqh<>		If $\underline{\text{fluxtype}} = \text{matrix}$ then a flux file is required.
file>		The flux file is a comma separated variable file with the hQh flux matrix, defining discharge for a combination of upstream and downstream water levels.
		It contains header lines (as many header lines as desired but with no more than 2 commas in each line), then a matrix as follows:
		 First row is a list of upstream water levels First column is a list of downstream water levels Matrix is discharge values corresponding to the listed water levels (corresponding row for downstream, corresponding column for upstream). The first value on the first line is a scale factor, which is applied to the Q values in the matrix.
		An example of a CSV file is given below: Weir Structure example
		Yds, yus
		1., 0., 2., 3., 5.
		0., 0., 10., 100., 125.
		1., 10., 30., 100., 125.
		2., 20., 50., 100., 125. 4., 30., 10., 100., 125.
Polygon file == <polyfile></polyfile>	•	Reads in a comma separated variable file with a polygon. The file contains a header line with column
		labels "x" and "y", which define the points

Command Line	Default	Description
		describing the perimeter of the polyfile. The definition of points needs to be consecutively listed and can be either clockwise or counter- clockwise. TUFLOW FV searches for cell centres that lie within the polygon.
<pre>Properties == <pl,,pn></pl,,pn></pre>		 If <u>fluxtype</u> = "Weir" or "Weir_dz", then P1 = weir crest level (for a weir) or level above existing bed levels (for a weir_dz) P2 = weir coefficient (default = 1.6) If function type = "Porous" then P1 = Porous structure hydraulic conductivity P2 = Porous structure width
<pre>Control == <controltype></controltype></pre>		 Specification of structure logic definition. If the structure <u>fluxtype</u>= weir_adjust or weir_dz_adjust, or the structure <u>celltype</u> = zb_adjust or dzb_adjust, then options available are: Control == Trigger the change in levels will commence upon the exceedence of a specific trigger value. Control == Time series The change in levels will commence according to a defined time series. Other options are available (see <u>support@tuflow.com</u> for more information): Fully_open Timeseries Sample_rule Target_rule
<pre>Sample point == <spx, spy=""></spx,></pre>		 If <u>control</u> == trigger then spx, spy defines the location that controls the variable z value structure (ie the "control" point)
Sample dt == <sdt (hours)></sdt 		The frequency of updating the variable structure (hours).
Trigger value ==		The value of the specified model parameter at the sample point spx, spy that, when exceeded,

Command Line	Default	Description
<tv></tv>		will trigger a change in structure elevations.
		Note that currently the trigger value can only be an absolute water level.
Control file ==		A comma separated file with structure controls.
<cfile></cfile>		The file contains a header line with specific column labels required for specific structure types:
		 If <u>flux function</u> == weir_adjust Column headers = "Time, weir_crest"
		If <u>cell function</u> == zb_adjust • Column headers = "Time, zb"
		If <u>flux function</u> == weir_dz_adjust or <u>cell</u> <u>function</u> == dzb_adjust
		• Column headers = "Time, dzb"
		 The "Time" values are specified as: If <u>control</u> == trigger Time is in hours from the moment that the structure adjustment commences. If <u>control</u> == time series Time is in hours from the start of the model simulation.
<pre>Structure logging == <0;1></pre>	0	If active a structural log file will be created (logfilename.slf) containing the operational behaviour of the structure through time.

8.5.2 Wind, Atmospheric Pressure and waves

Command Line	Default	Description
<pre>Include wind == <0;1></pre>	True (1) if wind boundary condition specified through a <u>BC</u> command, otherwise false (0).	Includes wind forcing in the calculations. 0 for false, 1 for true. Wind forcing will be automatically activated if a wind boundary condition has been specified through a <u>BC</u> command. In this case include wind == 0 can be used to de-activate the forcing.

Command Line	Default	Description
<pre>Include wavestress == <0;1></pre>	True (1) if wave boundary condition specified through a <u>BC</u> command, otherwise false (0).	Includes wave radiation stress forcing in the calculations. 0 for false, 1 for true. Wave stress forcing will be automatically activated if a wave model boundary condition has been specified through a <u>BC</u> command. In this case include wavestress == 0 can be used to de-activate the forcing.
Wave model == <wvmod></wvmod>	'SWAN"	Presently, SWAN is the only wave model option.
<pre>Include MSLP == <0;1></pre>	True (1) if an MSLP boundary condition specified through a <u>BC</u> command, otherwise false (0).	Includes atmospheric pressure forcing in the calculations. 0 for false, 1 for true. Atmospheric pressure forcing will be automatically activated if a MSLP field has been specified through a <u>BC</u> command. In this case include mslp == 0 can be used to deactivate the forcing.
<pre>Include stokes drift == <0;1></pre>	0	Incorporate Stokes drift velocity. 0 for false, 1 for true.
Atmos update dt == <timestep (s)=""></timestep>	If not specified this will occur at every model timestep.	Specifies the timestep for performing atmospheric forcing.
Density Air == <air density (kg/m³)></air 	1.2	Allows the user to specify the density of air.
Density Water == <water density<br="">(kg/m³)></water>	1000	Allows the user to specify the reference density of water.
Theta baroclinic == <theta_b></theta_b>		TBC
Reference Density == <density (kg="" m<sup="">3)></density>	1000.	Sets the reference density value used in calculation of the baroclinic pressure term.
Reference MSLP == <mean level<="" sea="" th=""><th>1013.25</th><th>Sets the reference mean sea level pressure value.</th></mean>	1013.25	Sets the reference mean sea level pressure value.

Command Line Pressure (hPa)>	Default	Description
Wind stress params == $\langle W_a(m/s), C_a(-), W_b(m/s), C_b(-) \rangle$	The default parameters are <0., 0.8E-03, 50., 4.05E-03> corresponding to the Wu parameterisation (with a 50 m/s upper limit).	Specifies the parameter values in the following wind stress drag model: $C_d = Ca; [W_{10} < W_a]$ $C_d = C_a + (W_{10} - W_a)/(W_b - W_a)^*(C_b - C_a);$ $[W_a <= W_{10} <= W_b]$ $C_d = C_b; [W_{10} > W_b]$
Wave stress params == <gamma, hmin=""></gamma,>		TBC

8.5.3 3D

Command Line	Default	Description
Vertical mesh type == <sigma;z></sigma;z>	Sigma.	Specifies the type of discretisation applied to the 3D layer structure. Can be either Sigma coordinates or fixed Z-level coordinates.
Min bottom layer thickness == <dzmin></dzmin>		Specify the minimum thickness of the lowest layer (ie at the bed).
Sigma layers == <nsigma></nsigma>		Number of sigma layers.
Cell 3D depth == <3d_dep>		If the water depth is less than this value then the 3D cells essentially revert to a 2D representation.
Layer faces == <file specifying<br="">layer interface levels (.csv)></file>	Specifying a layer face file will result in a 3D simulation. A 3D module license must be available for this to proceed.	Specifies the name of the file containing the 3D layer face information. The coordinate type depends on the <u>Vertical</u> <u>mesh type</u> . In the case of sigma-coordinates the layer elevations need to be specified in a 'SIGMA' column. In the case of z-coordinates the layer elevations should be specified in a 'Z' column.
Vertical gradient limiter ==	МС	Sets the Total Variation Diminishing (TVD) limiting scheme for 2 nd order vertical spatial integration scheme.

Command Line	Default	Description
<minmod; mc;="" superbee=""></minmod;>		The options are MINMOD, MC (Monotized Central) and SUPERBEE (ranging from least compressive to most compressive).
<pre>Vertical AlphaR == <alphav (scalars)="" (velocity),="" alphas=""></alphav></pre>	<1.0, 1.0>	This command can be used to apply a reduction factor to high-order cell reconstruction gradients, which may be useful in stabilising a higher-order simulation. Default is <1.0, 1.0>, whereas <0.0, 0.0> would revert to a first-order scheme.
<pre>Vertical mixing model == <constant; Parametric; External></constant; </pre>	Constant	 Sets the vertical momentum and scalar mixing model. Constant: a constant viscosity / diffusivity value is applied to the vertical mixing of both momentum and scalars; Parametric: a zero-equation parametric turbulence model in which a parabolic eddy viscosity / diffusivity profile is calculated. Stratification is represented using the Munk & Anderson stability formulae; External: any external turbulence model that has been built by the user to couple with TUFLOW FV through the fvwbm_external_turb.dll.
Vertical mixing parameters == <v1>, <v2></v2></v1>		ТВС
Global vertical eddy viscosity limits == <v1>, <v2></v2></v1>		TBC
Global vertical scalar diffusivity limits == <v1>, <v2></v2></v1>		ТВС
<pre>Initial Condition 3d == <initial (.csv)="" condition="" file=""></initial></pre>	Not used if not entered.	Reads in a comma separated variable file of initial conditions. This csv file contains initial conditions for each cell of the mesh. The following column headers are required in this file:

Command Line	Default	Description	
		ID, WL, U, V, [Sal], [Temp], [Sed_1,], [Scal_1,]	
		An example of the command usage and corresponding CSV file is given below:	
		ic ==\bc\initial_conditions_001.csv	
		initial_conditions.csv:	
		ID, WL, U, V, Scal_1, Scal_2, Scal_3	
		1, 0.300, 0.000,0.000, 1.000, 0.000, 0.000	

8.5.4 Salinity, Temperature, Density

Command Line	Default	Description
<pre>Include salinity == <0;1, 0;1></pre>	<0, 0> (no salinity)	Include salinity as a modelled parameter. 0 for false, 1 for true. The second flag specifies whether density is a function of the modelled salinity. 0 for false, 1 for true.
<pre>Include temperature == <0;1, 0;1></pre>	<0, 0> (no temperature)	Include temperature as a modelled parameter. 0 for false, 1 for true. The second flag specifies whether density is a function of the modelled temperature. 0 for false, 1 for true.
Reference Salinity == <salinity (psu)=""></salinity>	0.	Sets the model reference salinity.
Reference Temperature == <temperature (degrees celsius)></temperature 	20.	Sets the model reference temperature.
Initial Salinity == <salinity (psu)=""></salinity>	0.	Globally sets the initial scalar concentration fields.

Command Line	Default	Description
Initial Temperature	0.	Globally sets the initial scalar concentration fields.
== <temperature< td=""><td></td><td></td></temperature<>		
(degrees Celsius)>		

8.5.5 Sediments

Command Line	Default	Description
<pre>Include sediment == <0;1, 0;1></pre>	<0, 0> (no sediment).	Include suspended sediment fraction/s as modelled parameter/s. 0 for false, 1 for true. The second flag specifies whether density is a function of the modelled sediment fractions (0 for false, 1 for true). Additional information pertaining to sediment modelling is specified through the <u>Sediment</u> <u>control file</u> .
<pre>Sediment Control File == <file (.fvm)="" name=""></file></pre>	No default.	Specifies the sediment control file, which is required if the <u>include sediment</u> flag is set to 1. The sediment control file commands are described <u>in Section 0</u> .
<pre>Initial Sediment Concentration == (sed_1,,sed_Nsed (mg/L)></pre>		Globally sets the initial scalar concentration fields.

8.5.6 Heat Exchange

Command Line	Default	Description
<pre>Include heat == <0;1></pre>	0	Include heat exchange in the model solution. 0 for false, 1 for true.
Heat cp == <cp></cp>		Specific heat of water

Command File (FVC) Reference

Command Line	Default	Description
		Specific heat of air
Heat cpa == <cpa></cpa>		specific ficat of an
		Latent heat transfer coefficient
Heat cln == <cln></cln>		
Heat csn == <csn></csn>		Sensible heat transfer coefficient
Heat albedo lw ==		Long wave radiation albedo
<alb_lw></alb_lw>		
		Heat water emissivity
Heat water emissivity ==		
<eps_w></eps_w>		
		Fraction of PAR SW radiation
Heat PAR fraction == <par frac=""></par>		
\PAR_IIac>		
Heat NIR fraction		Fraction of NIR SW radiation
== <nir_frac></nir_frac>		
		Fraction of UVA SW radiation
Heat UVA fraction == <uva frac=""></uva>		
		Emotion of LIVD SW radiation
Heat UVB fraction		Fraction of UVB SW radiation
== <uvb_frac></uvb_frac>		
Heat DDD antisation		Extinction coefficient of PAR SW Radiation
Heat PAR extinction == <par_eta></par_eta>		
		Extinction coefficient of NIR SW Radiation
Heat NIR extinction		
== <nir_eta></nir_eta>		
Heat UVA extinction		Extinction coefficient of UVA SW Radiation
== <uva_eta></uva_eta>		
		Extinction coefficient of UVB SW Radiation
Heat UVB extinction		
== <uvb_eta></uvb_eta>		

Command File (FVC) Reference

Command Line	Default	Description
Heat SED absorption == <sed_abs></sed_abs>		Rate of light absorption by sediments
Heat ref height == <zrefa></zrefa>		Meteorological sensor height
Heat albedo SW == <alb_swo></alb_swo>		Mean SW radiation albedo at equator
Heat relax dt == <heat dt="" relax=""></heat>		Heat module relaxation timestep
Heat lh model == <lhmodel></lhmodel>		Latent heat transfer model
Heat lw model == <lwinput></lwinput>		Long wave radiation heat transfer model
Heat sw model == <swinput></swinput>		Short wave radiation heat transfer model

8.5.7 Water Quality

Command Line	Default	Description
Water quality model == <external></external>	None	Must be external.
WQ update dt == <timestep (s)=""></timestep>	If not specified this will occur at every model timestep.	Specifies the timestep for performing water quality parameter updating.
<pre>Initial WQ Concentration == <wq_1,, (mg="" l)="" wq_nwq=""></wq_1,,></pre>		Globally sets the initial scalar concentration fields for water quality.

8.5.8 Tracer

Command Line	Default	Description
Ntracer == <number of passive tracers></number 	0. If Ntracer > 0 then <u>Tracer Block</u> <u>commands</u> are required.	Sets the number of passive tracers to be modelled.
<pre>Initial Tracer Concentration == (tracer_1,tracer_Nt race (units/m³)></pre>		Globally sets the initial scalar concentration fields.

8.5.8.1 Description of Tracer Block Commands

Command Line	Default	Description
Tracer == <tracer id #> end tracer</tracer 		This command indicates the beginning of a tracer properties block, specifying the tracer id # that the properties should be applied to. Tracer properties include: • Settling Velocity • Decay Rate Example Tracer Block: tracer == 2 settling velocity == 1.0e-5 decay rate == 0.05 end tracer
Settling Velocity == <w<sub>s0 (m/s)></w<sub>		Specifies the scalar settling velocity in m/s. This results in a sink term flux, S: $S = -w_{s0}C$ where C is the scalar concentration. Specifies the scalar decay rate in concentration
Decay Rate == <kd (units/day)></kd 		units/day. This results in a sink term flux, S: $S = K_dCh$

Command Line	Default	Description
		where C is the scalar concentration and h is the flow depth.
End Tracer		This command indicates the end of a tracer block.

9 Sediment Module Control File (fvm) Reference

9.1 List of Available Commands

Concentration profile model	Consolidation model	<u>Nlayer</u>
Flocculation settling model	Nline	Layer
Hindered settling model	Nsed	<u>rhodry</u>
Erosion model	<u>ws0</u>	Mass
End layer	taucd	tauce
End material	<u>rhos</u>	Erosion rate params
End output	Material	Output dir
End sed frac	ks	<u>Output</u>
Output parameters	Output interval	
Write restart	Flocculation settling params	
Sed frac	Hindered settling params	
Concentration profile params	Consolidation model params	

9.2 Description of General Commands

```
Concentration Profile Model == <Uniform;Rouse>
```

Sets the concentration profile model. Uniform = concentration uniform with depth. Rouse = the con

Concentration Profile Params == <TBC>

TBC

Flocculation Settling Model == <Constant;Concentration;Concentration&Salinity>

Sets the flocculation settling model. Constant =

Flocculation Settling Params == <TBC>

Hindered Settling Model == <None;RZ>

Sets the hindered settling model. None = hindered settling neglected. RZ = hindered settling is calculated according to Richardson and Zaki (1954).

Hindered Settling Params == <TBC>

TBC

Erosion Model == <Metha>

Sets the erosion model.

Consolidation Model == <None;Constant>

TBC

NSed == <number of sediment fractions (between 1 and 100)>

This command specifies the number of sediment fractions in the simulation. Each sediment fraction has specific properties defined in the <u>Sed frac</u> block. The maximum number of fractions is 100.

Nlayer == <number of bed layers (between 1 and 10)>

This command specifies the number of bed layers in the simulation. Each bed layer has specific properties defined in the <u>layer</u> block. The maximum number of bed layers is 10.

9.3 Description of Sediment Block Commands

Sed frac == <Nsed id #>

This command indicates the beginning of a sediment fraction block, specifying properties for the sediment fraction with <u>Nsed</u> id #. Sediment fraction properties include:

<u>ws0</u>

taucd

<u>rhos</u>

Example sediment fraction block:

```
sed frac == 1
ws0 == 0.001
taucd == 0.10
rhos == 2650
end material
```

ws0 == <settling velocity (m/s)>

This command specifies the sediment fraction settling velocity in m/s.

If the <u>flocculation settling model</u> is "constant" and hindered settling is neglected, the sediment settling velocity is not influenced by the concentration in the water column and a constant sediment settling velocity is applied.

If the <u>flocculation settling model</u> is "concentration" or "concentration&salinity" the sediment settling velocity is influenced the water column parameters.

If the <u>hindered settling model</u> is "RZ" the sediment settling velocity is determined according to Richardson and Zaki (1954).

taucd == <deposition critical shear stress (N/m^2) >

TBC

rhos == <sediment density (kg/m³)>

TBC

9.4 Description of Material Block Commands

Material == <material id #>

This command indicates the beginning of a material block, specifying properties for cells with material id #. Material properties are specified for each bed <u>layer</u> and include:

<u>ks</u>

rhodry

TUFLOW FV USER MANUAL BUILD 2010-10-AA

mass

tauce

erosion rate params

Example material block:

```
material == 1

ks == 0.001

layer == 1

rhodry == 450

mass == TBC

tauce == 0.2

erosion rate params == 0.0,1.0

end layer

end material
```

ks == <Nikuradse roughness length (-)>

TBC

Layer == <layer id #>

This command indicates the beginning of a layer block, specifying properties for the bed layer with <u>Nlayer</u> id #.

Example layer block:

```
layer == 1
rhodry == 450
mass == TBC
tauce == 0.2
erosion rate params == 0.0,1.0
end layer
```

rhodry == <bed layer dry density (kg/m^3) >

TBC

Mass ==
 ked layer mass (kg/m^2) >

TBC

tauce == <erosion critical shear stress (N/m^2) >

TBC

Erosion Rate Params == <erosion rate $(g/m^2/s)$, alpha (-)>

TBC

Consolidation Model Params == <TBC>

TBC

End Layer

This command indicates the end of the layer block

End Material

The command indicates the end of the material block

Write Restart

TBC

10 2dm Mesh File Format Reference

This section provides a reference to the various components of the mesh file and provides further insight into how TUFLOW FV uses it.

Unstructured mesh geometries can be created using any suitable mesh generation tool. As a preference, BMT uses the SMS Generic Mesh Module (<u>www.aquaveo.com/sms</u>) for building meshes. As a result the TUFLOW FV mesh file format is the SMS mesh file format.

Setting up and running a TUFLOW FV model simulation does not necessarily require a detailed line by line inspection of the mesh file; SMS (or another mesh generator) provides a graphical interface to do this instead. Nevertheless, a modeller may find it necessary at times to interrogate the 2dm file in detail.

The mesh file is an ASCII format that can be viewed and manipulated using text editing software. The mesh has an extension ".2dm". The 2dm file has a series of lines and blocks that define the various properties of the mesh file and associated structures. There are 3 specific line / block types that TUFLOW FV reads and uses:

- 1 The element (or cell) definitions lines defining elements begin with the characters "E4Q" or "ET3"
- 2 The node definitions lines defining nodes begin with the characters "ND"
- 3 The nodestring definitions lines defining nodestrings begin with the characters "NS"

Note that if created using SMS, the 2dm file contains additional blocks which TUFLOW FV ignores that are not described below.

10.1 Element definitions – E4Q and E3T

The 2dm file begins with a header line followed by a list of element definitions. Figure 10-1 shows the first 20 lines of a mesh file (using the UltraEdit text editor).

Mesh elements can be either quadrilateral or triangular.

A line describing a **quadrilateral** element begins with "E4Q" and is followed by a number corresponding to the element (or cell) id. The next 4 numbers are the IDs of the 4 nodes that define the quadrilateral element corners in a counter-clockwise direction.

The final number is the element "material id" that is used to define areas with the same bed roughness. The SMS screen shot in Figure 10-2 shows a quadrilateral element highlighted in red with the panel below describing how the element is defined in the mesh file.

A line in the mesh file that describes a **triangular** element begins with "E3T" and is followed by a number corresponding to the element (or cell) id. The next 3 numbers are the ids of the three nodes that connect to create the triangular element.

The final number is the element "material id" that is used to define areas with the same bed roughness. The SMS screen shot in Figure 10-3 shows a triangle element highlighted in red with the panel below describing how the element is defined in the mesh file.

UltraEdit - [0:\TUFLOW_FV\Models\Tutorial_Model\geo\M01_FV_Mes	
File Edit Search Insert Project View Format Column Macro Scripting A	
	🖻 🛱 🕘 🚽 🔹 👬 🛣 🖧 🙄
o:\TUFLOW_FV\Models\Tutorial_Mo 👱 🖕 🖸 🐄 W 🕎 💡 🌅 🕪 🎰 🛹 灯 🚽	
Open Files	★ † ×
M01_FV_Mesh_001.2dm ×	
♥	0
2 E4Q 1 1 173 172 2 1	
3 E4Q 2 2 172 174 3 1	
4 E4Q 3 3 174 175 4 1 5 E4O 4 4 175 176 5 1	
6 E4O 5 5 176 177 6 1	
7 E4Q 6 6 177 178 7 1	
8 E4Q 7 7 178 179 8 1	
9 E4Q 8 8 179 180 9 1	
10 E4Q 9 9 180 181 10 1	
11 E4Q 10 10 181 182 11 1	
12 E4Q 11 11 182 183 12 1	
13 E4Q 12 12 183 184 13 1 14 E4Q 13 13 184 185 14 1	
15 E4Q 14 14 185 186 15 1	
16 E4Q 15 15 186 187 16 1	
17 E4Q 16 16 187 188 17 1	
18 E4Q 17 17 188 189 18 1	
19 E4Q 18 18 189 190 19 1	
20 E4Q 19 19 190 191 20 1	~
<	
	1 • 🗐 🔳 🕹 🔐 🦓 📆 📮 🖩 🖳 💁 🚆
	lod: 10/05/2010 4:13:17 PM File Size: 4363956

Figure 10-1 TUFLOW FV Mesh File Viewed Using UltraEdit Text Editor

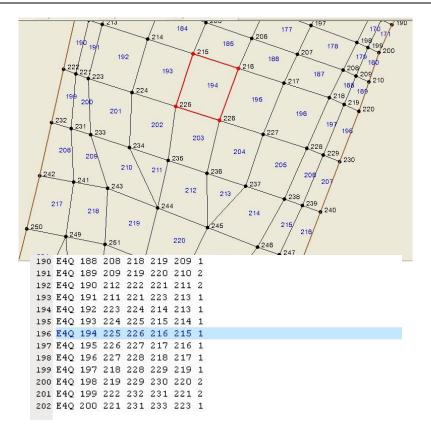


Figure 10-2 Example Quadrilateral Element Definition

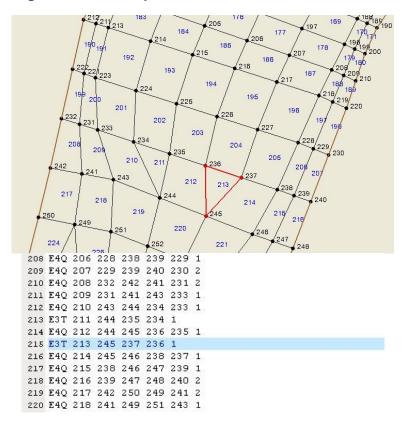


Figure 10-3 Example Triangular Element Definition

10.2 Node definitions – ND

A line in the mesh file that defines a node begins with "ND" and is followed by a number corresponding to the node id. The final three numbers in a node line define the X,Y spatial position of the node (in either Cartesian or Spherical coordinates) and the elevation in meters at that location.

The screen shot in Figure 10-4 shows node 236 selected and its corresponding position and elevation displayed in the X,Y,Z dialog boxes. The panel below describes how the node is defined in the mesh file.

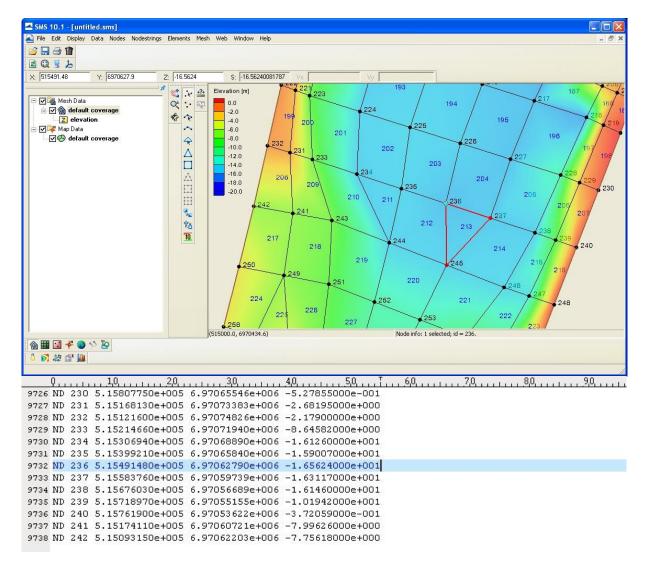


Figure 10-4 Example Node Definition

10.3 Nodestring definitions – NS

TUFLOW FV uses nodestrings to define open boundary locations. A line in the mesh file that defines a nodestring begins with "NS" and is followed by a list of node ids that connect to create the nodestring. Figure 10-5 shows a nodestring across an open boundary of a mesh. The panel below describes how the nodestring is defined in the mesh file. Note that the final node in the nodestring is

TUFLOW FV USER MANUAL BUILD 2010-10-AA

indicated by a "-" symbol (i.e. node 9 in Figure 10-5), followed by the nodstring ID (i.e. nodestring 1 is highlighted in Figure 10-5).

TUFLOW FV reads nodestrings according to their ID.

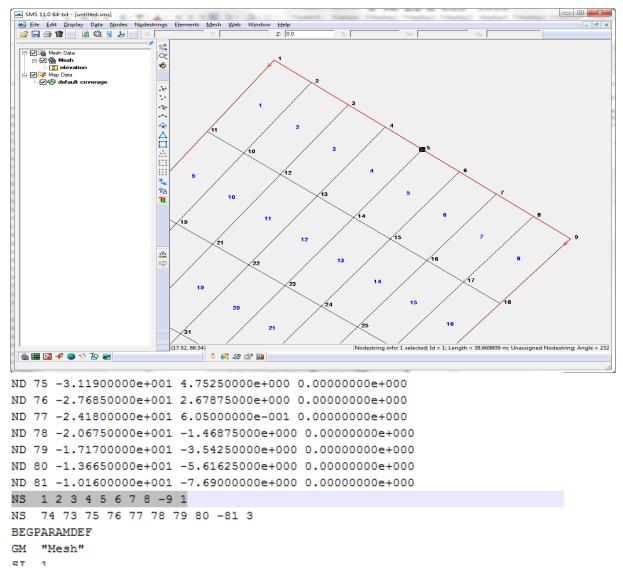


Figure 10-5 Example Nodestring Definition

11 References

11.1 References in document

11.2 Additional references to TUFLOW FV in literature

12 Index

